Structured Codes for Cryptography: from Source of Hardness to Applications

PhD Defense

Maxime Bombar

Under the supervision of Alain Couvreur and Thomas Debris-Alazard

December 15, 2023

Outline

- 1 Introduction
- 2 Contributions of this Thesis
- 3 The Function Field Decoding Problem
- 4 Beyond Quasi-Cyclicity
- **5** Conclusion And Perspectives

Public Key Cryptography

Hard Computational Problems

- Integer Factorisation
- (Elliptic Curve) Discrete Logarithm
- Euclidean Lattices
- Coding Theory
-

Public Key Cryptography

Quantum Menace (Shor, 1994)

Hard Computational Problems

- **Integer Factorisation**
- (Elliptic Curve) Discrete Logarithm
- Euclidean Lattices Coding Theory Error-Based

Considered for standardisation

Error-based Cryptography

How to choose $\mathbf{e} \in \mathbb{F}_a^n$ to make this problem hard?

Error-based Cryptography

Target: $\mathbf{s} \in \mathbb{F}_{c}^{r}$

How to choose $e \in \mathbb{F}_q^n$ to make this problem hard?

- "Small" coefficients: Lattice-based cryptography
- Few non-zero coefficients: (Hamming) Code-based cryptography
- Small "rank": Rank-based cryptography

The Decoding Problem (Hamming)

- Studied for over 60 years (Prange, 1962);
- Hardness depends on the Hamming weight of e;
- Very hard in some regimes.

Two approaches for Code-Based Encryption

McEliece (1978)

- Oldest cryptosystem currently not (quantumly) broken;
- Does not only relies on the Decoding Problem;
- Many instantiations have been broken (original one still secure).

Two approaches for Code-Based Encryption

McEliece (1978)

- Oldest cryptosystem currently not (quantumly) broken;
- Does not only relies on the Decoding Problem;
- Many instantiations have been broken (original one still secure).

Alekhnovich (2003)

Truly relies on the Problem of Decoding random linear codes.

Alekhnovich cryptosystem (2003)

Maxime Bombar PhD Defense 6 / 43

Alekhnovich Cryptosystem; Encrypt one bit

To encrypt 1, send

uniform

Alekhnovich Cryptosystem; Decryption

To decrypt a received $\mathbf{y} \in \mathbb{F}_2^n$ compute $\langle \mathbf{y}, \mathbf{s} \rangle$: **Distinguisher**.

Maxime Bombar PhD Defense 8 / 43

The Decisional Decoding Problem

How hard can it be?

The Decisional Decoding Problem

As hard as Decoding Problem (Search-to-Decision Reduction): (Fischer, Stern, 1996)

Adding Structure for Efficiency

$$\begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{pmatrix}$$

Circulant matrix

A Polynomial Representation

Bonus: Supports fast operations.

$$\begin{pmatrix} a_{0} & a_{1} & \dots & a_{n-1} \\ a_{n-1} & a_{0} & \dots & a_{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ a_{1} & a_{2} & \dots & a_{n-1} & a_{0} \end{pmatrix} \longleftrightarrow \mathbf{a}(X) = \sum_{i=0}^{n-1} a_{i} X^{i}$$

 \longleftrightarrow $\mathbf{s}(X) \cdot \mathbf{a}(X) \mod (X^n - 1)$

A Polynomial Representation (Cont'd)

Maxime Bombar PhD Defense 12 / 43

Structured Variants of the Decoding Problem

$$\mathcal{R}$$
 ring, e.g. $\mathcal{R} = \mathbb{F}_q[X]/(X^n-1)$ (Quasi-Cyclic).

Search Version

Input. N samples of the form $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$ where $\mathbf{a} \leftarrow \mathcal{R}$, and $|\mathbf{e}| = t$.

Goal. Find $s \in \mathcal{R}$.

Decision Version

Goal. Distinguish between $(\mathbf{a}, \mathbf{y}^{\text{unif}})$ and $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$, given N samples.

Remark. BIKE and HQC (NIST 4th round).

Hardness of Structured Variants

Still believed to be hard in general

Decoding algorithms don't perform much better with Quasi-Cyclic codes.

At the beginning of this thesis

No search-to-decision reduction.

Natural questions

- Which choices of $\mathcal R$ yield secure instances?
- Are there other applications than traditional encryption?

Secure Multi-Party Computation (MPC)

Main Bottleneck: Communication

MPC in the Correlated Randomness Model

A key observation by Beaver (1991)

- It is possible to push the secure computation before the inputs are known using correlated random sequences. ✓
- This preprocessing remains very slow.

Pseudorandom Correlation Generators (Boyle, Couteau, Gilboa, Ishai 2018, + Kohl, Scholl 2019, 2020)

- Generating correlated randomness with **minimal interaction**. ✓
- Relies on variants of (Decisional) Decoding Problems.
- Structured variants for more powerful correlations, extension to N parties.

Underlying ring:
$$\mathbb{F}_q[X]/(F(X)) \cong \mathbb{F}_q \times \cdots \times \mathbb{F}_q \to \deg(F) \leqslant q$$
 copies of \mathbb{F}_q .

Question: Can we reduce q ?

Outline

- 1 Introduction
- 2 Contributions of this Thesis
- 3 The Function Field Decoding Problem
- 4 Beyond Quasi-Cyclicity
- **5** Conclusion And Perspectives

State of Affairs

Structured codes are very appealing:

- Enable efficient cryptography;
- Even advanced primitives.

But lack of strong foundations:

- No search-to-decision reduction;
- "Exotic" structures less studied.

Lattice-based cryptography has been faced with similar issues:

- Solved with framework from algebraic number theory;
- This is what improved faith in Euclidean lattices compared to codes.

Structured Lattices: a History of Reductions¹

¹Not exhaustive

Maxime Bombar PhD Defense 18 / 43

Codes are Catching-Up

B., Couvreur, Debris-Alazard

- 2022: On Codes and Learning with Errors over Function Fields
- 2023: Pseudorandomness of Decoding, Revisited: Adapting OHCP to Code-Based Cryptography

 → *Caveat when considering the case of structured codes.

Applications to MPC

- **B.**, Couteau, Couvreur, Ducros, 2023: *Correlated Pseudorandomness from the Hardness of Quasi-Abelian Decoding*.
- Variant of the Decoding Problem based on **Group Algebras** (Generalise Quasi-Cyclic).
- "Impossibility" result for q = 2.

Not a timeline

Cryptanalysis in the Rank-Metric

 \mathbb{F}_{a^m} -linear codes endowed with the **rank-metric**: Yet another form of structured codes.

- **B.**, Couvreur, 2021: Decoding Supercodes of Gabidulin Codes and Application to Cryptanalysis
- **B.**, Couvreur, 2022: Right-Hand Side Decoding of Gabidulin Codes and Applications

Outline

- 1 Introduction
- 2 Contributions of this Thesis
- 3 The Function Field Decoding Problem
- 4 Beyond Quasi-Cyclicity
- **5** Conclusion And Perspectives

A number theoretic framework

Structured lattice problems

Defined using Number Fields and their Rings of Integers.

e.g.
$$\mathcal{R} = {^{\mathcal{O}_{K}}}/_{q\mathcal{O}_{K}}$$
 where

- $\mathcal{O}_K = \mathbb{Z}[X]/(X^n+1)$, with $n=2^\ell$.
- $q \in \mathbb{Z}$.

Wishful Thinking

$$\mathbb{F}_q[X]/(X^n-1)$$
 looks similar to $\mathbb{Z}[X]/(X^n+1)$.

Can we build analogous cryptographic constructions with both rings?

Wishful Thinking

$$\mathbb{F}_q[X]/(X^n-1)$$
 looks similar to $\mathbb{Z}[X]/(X^n+1)$.

Can we build analogous cryptographic constructions with both rings?

- $\mathbb{F}_q[X]/(X^n-1)$ has Krull dimension 0; $\mathbb{Z}[X]/(X^n+1)$ has Krull dimension 1.
 - \rightarrow Analogue of ${}^{\mathcal{O}_{K}}/{}_{\mathcal{QO}_{K}}$ instead?

Gaining Height

$$\underbrace{\mathbb{F}_q[X]/(X^n-1)}_{\text{World of Computations}} = \mathbb{F}_q[T][X]/(T,X^n+T-1) = \underbrace{\mathcal{O}_K/T\mathcal{O}_K}_{\text{World of Proofs}}$$

$$\mathcal{O}_{\mathcal{K}}$$
 $\qquad \qquad \mathcal{K}$ $\qquad \qquad \mid$ $\qquad \qquad T \in \mathbb{F}_q[T]$ $\qquad \qquad \qquad \mathbb{F}_q(T)$

Idea: Number field - Function field analogy

Number field - Function field analogy

An old analogy

(Informal) Finite extensions of \mathbb{Q} and finite extensions of $\mathbb{F}_q(T)$ share many properties.

 \mathbb{Q}

Prime numbers $q \in \mathbb{Z}$

$$K = \mathbb{Q}[X]/(F(X))$$

= Integral closure of \mathbb{Z} **Dedekind** domain

characteristic 0

$$\mathbb{F}_q(\mathcal{T})$$
 $\mathbb{F}_q[\mathcal{T}]$ Irreducible polynomials $Q\in\mathbb{F}_q[\mathcal{T}]$

$$K = \mathbb{F}_q(T)[X]/(F(T,X))$$

 $\begin{aligned} & \mathcal{O}_{\mathcal{K}} \\ &= \mathsf{Integral\ closure\ of}\ \mathbb{F}_q[\,\mathcal{T}] \\ & \mathbf{Dedekind\ domain} \end{aligned}$

characteristic p

Function Field Decoding Problem - FF-DP

•
$$K = \mathbb{F}_q(T)[X]/(f(T,X))$$

- \mathcal{O}_K ring of integers
- $Q \in \mathbb{F}_q[T]$ irreducible.
- ψ some error distribution over $\mathcal{O}_{\mathcal{K}}/Q\mathcal{O}_{\mathcal{K}}.$

Search FF-DP

Input. N samples of the form $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$ where $\mathbf{a} \leftarrow \mathcal{O}_K / Q \mathcal{O}_K$, and $\mathbf{e} \leftarrow \psi$.

Goal. Find $s \in \mathcal{O}_K/Q\mathcal{O}_K$.

Decision FF-DP

Goal. Distinguish between $(\mathbf{a}, \mathbf{y}^{\text{unif}})$ and $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$, given N samples.

Main theorem of [BCD22]

Let K be a function field with **constant field** \mathbb{F}_q , $Q \in \mathbb{F}_q[T]$ irreducible.

Assume that

- (1) K is a **Galois** extension of $\mathbb{F}_q(T)$ of not too large degree.
- (2) Ideal $\mathfrak{P} = Q\mathcal{O}_K$ does not ramify and has not too large inertia degree.
- (3) For all $\sigma \in \operatorname{Gal}(K/\mathbb{F}_q(T))$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.

Remark. (2) $\iff \mathfrak{P} = \mathfrak{P}_1 \dots \mathfrak{P}_r$ with \mathfrak{P}_i prime ideals and $\mathcal{O}_K/\mathfrak{P}_i = \mathbb{F}_{q^\ell}$ with ℓ small.

Proof similar to Ring-LWE from (Lyubashevsky, Peikert, Regev, 2010).

How to instantiate FF-DP?

What do we need?

- Galois function field $K/\mathbb{F}_q(T)$ with **small** field of constants;
- Nice behaviour of places;
- Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.

Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.

 $\mathbb{Q}[\zeta_n]$ is built by adding the *n*-th roots of 1. What about $\mathbb{F}_a(T)$?

A false good idea

Adding roots of 1 to $\mathbb{F}_q(T)$ yields extension of constants \Rightarrow We get $\mathbb{F}_{q^m}(T)$.

Cyclotomic function field (Good idea)

(Carlitz, 1938; Hayes, 1974)

Intuition:

- $\overline{\mathbb{Q}}^{\times}$ is endowed with a \mathbb{Z} -module structure by $n \cdot z \stackrel{\text{def}}{=} z^n$.
- $\mathbb{U}_n = \{z \in \overline{\mathbb{Q}} \mid z^n = 1\} = n$ -torsion elements.

Idea:

- $\mathbb{Z} \longleftrightarrow \mathbb{F}_q[T] \Longrightarrow$ Consider a new $\mathbb{F}_q[T]$ -module structure on $\overline{\mathbb{F}_q(T)}$.
- Add torsion elements to $\mathbb{F}_q(T)$:

$$\Lambda_M \stackrel{\mathrm{def}}{=} \left\{ \lambda \in \overline{\mathbb{F}_q(T)} \mid M \cdot \lambda = 0 \right\}.$$

Carlitz Polynomials

For $M \in \mathbb{F}_q[T]$ define $[M] \in \mathbb{F}_q(T)[X]$ by:

- [1](X) = X
- $[T](X) = X^q + TX$
- \mathbb{F}_q -Linearity $+ [M_1M_2](X) = [M_1]([M_2](X))$

Fact. [M] is a q-polynomial in X with coefficients in $\mathbb{F}_q[T]$.

Examples:

- For $c \in \mathbb{F}_q$, [c](X) = cX
- $[T^2](X) = (X^q + TX)^q + T(X^q + TX) = X^{q^2} + (T^q + T)X^q + T^2X$

31 / 43

Carlitz Module

Fact.
$$\mathbb{F}_q[T]$$
 acts on $\overline{\mathbb{F}_q(T)}$ by $M \cdot z = [M](z)$.

 $\overline{\mathbb{F}_q(T)}$ endowed with this action is called the \mathbb{F}_q -Carlitz module.

- $\quad \bullet \quad \Lambda_M \stackrel{\mathrm{def}}{=} \left\{ z \in \overline{\mathbb{F}_q(T)} \mid [M](z) = 0 \right\} \ \textit{M}\text{-torsion elements} \simeq \mathbb{U}_n.$
- $\mathbb{F}_a(T)[\Lambda_M] =$ **cyclotomic** function field.
- $\operatorname{Gal}(K/\mathbb{F}_q(T)) \simeq \left(\mathbb{F}_q[T]/(M) \right)^{\times}$ (Efficiently computable).

Cyclotomic versus Carlitz

 \mathbb{Z}

Prime numbers $q \in \mathbb{Z}$

$$\mathbb{U}_n = \langle \zeta \rangle \simeq \mathbb{Z}_{(n)}$$
 (groups)

 $d \mid n \Longleftrightarrow \mathbb{U}_d \subset \mathbb{U}_n \text{ (subgroups)}$

$$K = \mathbb{Q}[\zeta]$$
 $\mathcal{O}_K = \mathbb{Z}[\zeta]$

$$\operatorname{Gal}(K/\mathbb{Q}) \simeq \left(\mathbb{Z}/(n)\right)^{x}$$

Cyclotomic

$$\mathbb{F}_q(T)$$

 $\mathbb{F}_q[T]$

Irreducible polynomials $Q \in \mathbb{F}_q[T]$

$$\Lambda_M = \langle \lambda \rangle \simeq \mathbb{F}_q[T]_{M} \pmod{modules}$$

 $D \mid M \Longleftrightarrow \Lambda_D \subset \Lambda_M \text{ (submodules)}$

$$\mathcal{K} = \mathbb{F}_q(T)[\lambda]$$
 $\mathcal{O}_{\mathcal{K}} = \mathbb{F}_q[T][\lambda]$

$$\operatorname{Gal}(K/\mathbb{F}_q(T)) \simeq \left(\mathbb{F}_q[T]_{\bigwedge(M)} \right)^x$$

Carlitz

Important example

$$[T](X) = X^q + TX$$

$$\Lambda_{T} = \{z \mid z^{q} + Tz = 0\} = \{0\} \cup \{z \mid z^{q-1} = -T\};$$

$$K = \mathbb{F}_{q}(T)(\Lambda_{T}) = \mathbb{F}_{q}(T)[X]/(X^{q-1} + T);$$

$$\mathcal{O}_{K} = \mathbb{F}_{q}[T][X]/(X^{q-1} + T);$$

$$Gal(K/\mathbb{F}_{q}(T)) = (\mathbb{F}_{q}[T]/(T))^{\times} = \mathbb{F}_{q}^{\times};$$

Maxime Bombar PhD Defense 34 / 43

 $\mathcal{O}_{\mathcal{K}}/((T+1)\mathcal{O}_{\mathcal{K}}) = \mathbb{F}_q[T][X]/(X^{q-1}+T,T+1) = \mathbb{F}_q[X]/(X^{q-1}-1)$

Totally Split QC-Decoding

•
$$K = \mathbb{F}_q(T)[\Lambda_T],$$
 $\mathcal{O}_K/(T+1)\mathcal{O}_K = \mathbb{F}_q[X]/(X^{q-1}-1).$

$$lacksquare$$
 Gal $(K/\mathbb{F}_q(T))=\mathbb{F}_q^ imes$ acts on $\mathbb{F}_q[X]/(X^{q-1}-1)$ via

$$\zeta \cdot P(X) = P(\zeta X) \Rightarrow$$
 Support is **Galois invariant!**

Search to decision reduction

Decision QC-decoding with underlying ring $\mathbb{F}_q[X]/(X^{q-1}-1)$ is as hard as Search.

$$\mathbb{F}_q[X] / (X^{q-1} - 1) \cong \underbrace{\mathbb{F}_q \times \cdots \times \mathbb{F}_q}_{q-1 \text{ copies}} \to \mathsf{Ring} \text{ used for MPC applications!}$$

Outline

- 1 Introduction
- 2 Contributions of this Thesis
- 3 The Function Field Decoding Problem
- 4 Beyond Quasi-Cyclicity
- **5** Conclusion And Perspectives

Action of a Cyclic Group

Observation. $\mathbb{F}_q[X]/(X^{q-1}-1)$ is endowed with the action of $\operatorname{Gal}(K/\mathbb{F}_q(T)) \stackrel{\text{def}}{=} \mathbb{F}_q^{\times}$.

More generally. $\mathbb{Z}/_{n\mathbb{Z}}$ acts <u>linearly</u> upon $\mathbb{F}_q[X]/(X^n-1)$.

They are examples of Group Algebras.

Finite (abelian) group
$$G$$
, $\mathbb{F}_q[G] = \left\{ \sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_q \right\} \simeq \mathbb{F}_q^{|G|}$

$$\left(\sum_{g\in G} a_g g\right) \left(\sum_{g\in G} b_g g\right) \stackrel{\text{def}}{=} \sum_{g\in G} \left(\sum_{h\in G} a_h b_{h^{-1}g}\right) g.$$

$$G = \{1\}$$
 $\mathbb{F}_q[G] = \mathbb{F}_q$,

$$G = \mathbb{Z}/N\mathbb{Z}$$
 $\mathbb{F}_q[G] = \mathbb{F}_q[X]/(X^N - 1),$

$$G = \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/M\mathbb{Z}$$
 $\mathbb{F}_{a}[G] = \mathbb{F}_{a}[X, Y]/(X^{N} - 1, Y^{M} - 1).$

Hamming weight is well-defined given an ordering of G!

Quasi-abelian codes

A quasi-abelian code is an $\mathbb{F}_q[G]$ -submodule of $\mathbb{F}_q[G]^\ell$

$$n \stackrel{\mathrm{def}}{=} |G|$$
.

$$oldsymbol{\Gamma} = egin{pmatrix} \gamma_{1,1} & \dots & \gamma_{1,\ell} \ dots & \ddots & dots \ \gamma_{k,1} & \dots & \gamma_{k,\ell} \end{pmatrix} \in \mathbb{F}_q[G]^{k imes \ell}$$

$$\mathcal{C} \stackrel{\mathrm{def}}{=} \{ \mathbf{m} \mathbf{\Gamma} \mid \mathbf{m} \in \mathbb{F}_q[G]^k \}.$$

Quasi-Abelian Decoding Problem

 $\mathcal{R} \stackrel{\mathrm{def}}{=} \mathbb{F}_q[G]$ abelian group algebra, ψ (sparse) error distribution over \mathcal{R} .

Search Version

Input. N samples of the form $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + \mathbf{e})$ where $\mathbf{a} \leftarrow \mathcal{R}^{\ell}$, and $\mathbf{e} \leftarrow \psi$.

Goal. Find $\mathbf{s} \in \mathcal{R}^{\ell}$.

Decision Version

Goal. Distinguish between $(\mathbf{a}, \mathbf{y}^{\text{unif}})$ and $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + \mathbf{e})$, given N samples.

Generalise both plain ($G = \{1\}$) and quasi-cyclic ($G = \mathbb{Z}/n\mathbb{Z}$) decoding problems.

A multivariate setting for MPC applications

Goal. Find
$$G$$
 such that $\mathbb{F}_q[G] \simeq \underbrace{\mathbb{F}_q \times \cdots \times \mathbb{F}_q}_{N \text{ copies}}$ with $N \gg 1$.

A multivariate setting for MPC applications

Goal. Find
$$G$$
 such that $\mathbb{F}_q[G]\simeq \underbrace{\mathbb{F}_q\times\cdots\times\mathbb{F}_q}_{N\text{ copies}}$ with $N\gg 1$.

Idea. Take $G = (\mathbb{Z}/(q-1)\mathbb{Z})^t$ for some $t \ge 1$.

$$\begin{split} \mathbb{F}_q[G] &= \mathbb{F}_q[X_1, \dots, X_t] / (X_1^{q-1} - 1, \dots, X_t^{q-1} - 1) \\ &\simeq \prod_{(\zeta_1, \dots, \zeta_t) \in (\mathbb{F}_q^{\times})^t} \mathbb{F}_q[X_1, \dots, X_t] / (X_1 - \zeta_1, \dots, X_t - \zeta_t) \\ &\simeq \underbrace{\mathbb{F}_q \times \dots \times \mathbb{F}_q}_{(q-1)^t \text{ copies}} \end{split}$$

- As many copies as wished as long as $q \ge 3!$
- Problem when q=2.

Hardness of the Quasi-Abelian Decoding Problem?

- No efficient decoding algorithm, even 50 years after their introduction [W77].
- Previous Search-to-Decision reduction extends to this instantiation!

Outline

- 1 Introduction
- 2 Contributions of this Thesis
- 3 The Function Field Decoding Problem
- 4 Beyond Quasi-Cyclicity
- **5** Conclusion And Perspectives

Conclusion and Perspectives

Conclusion.

- A new algebraic framework to unify structured variants of the decoding problem.
- Bring insight on structured variants.
- The group action is the key to the reduction:
 - → Naturally appears with the function field framework;
 - \rightarrow Otherwise, seems completely pulled out of a hat.
- More general rings endowed with a group action seems to yield secure variants.

Perspectives and Future Work

Foundations.

- Improve the analysis of [BCD23] to handle structured codes.
 - → Rényi Divergence?
- Extend this OHCP technique to get reduction for other metrics (e.g. rank metric, Lee metric, ...)?
- Developping new tools to specifically target structured codes.
 - → Representation theory?

Applications.

- Circumvent the impossiblity result to make the PCG construction work over \mathbb{F}_2 ?
 - → (Reverse) Multiplication Friendly Embedding?
- Improving efficiency of the construction
 - → Fast computation in (modular) group algebra?
- Implementations.

Backup Slides

Outline

- 6 The OCP Framework
- 7 The case of LAPIN
- 8 MPC applications
- 9 The curious case of \mathbb{F}_2

From Decoding to LPN [BLVW19, YZ21]

From Decoding to LPN [BLVW19, YZ21]

Maxime Bombar PhD Defense 1/36

Building LPN-like Oracle

- $\mathbf{Gr} \approx^?$ uniform
- $(\mathbf{Gr}, \mathbf{t} \cdot \mathbf{r})$ are correlated ...

Building LPN-like Oracle

Statistically close

- → **Average-case:** Leftover hash lemma
- → Worst-case: Notion of smoothing distribution ([BLVW19, YZ21, DDRT23, DR23])

Bernoulli Smoothing

(Non Standard) Notation

$$r_i \leftarrow \mathsf{Ber}(\omega)$$
 if r_i Bernoulli with $\mathbb{P}(r_i = 1) = \frac{1}{2} (1 - 2^{-\omega})$.

Remark: Ber(ω_1) + Ber(ω_2) = Ber($\omega_1 + \omega_2$).

Smoothing bounds from [DR23]

A continuous hybrid argument

- $\bullet \quad (\mathbf{G}, \mathbf{y} \stackrel{\mathrm{def}}{=} \mathbf{s}\mathbf{G} + \mathbf{t})$
- Distinguisher \mathscr{A} between LPN(ω_0) and LPN(∞).
- \mathscr{A} makes N queries to the oracle and has advantage ε .

We build LPN($\omega|\mathbf{t}|$) oracle.

- \mathscr{A} can be given any LPN(ω)-like oracle.
- Will accept with some probability $p(\omega)$.

- $p(\omega_0) = \frac{1}{2} + \varepsilon$
- $p(\omega) \to \frac{1}{2} \varepsilon$ as $\omega \to \infty$

- $p(\omega)$ unknown for $\omega \in (\omega_0, \infty)$
- But can be estimated via statistical methods.

Acceptance behaviour of $\mathscr{A}^{\mathsf{LPN}(\omega)}$ must change as $\omega \to \infty$.

Estimating $p(\omega)$

Wishful thinking: Testing Support Membership

Wishful thinking: Testing Support Membership

Wishful thinking: Testing Support Membership

Not so easy to distinguish those two situations...

Shift your oracles

Idea: Zoom in and sample $\mathbf{r} \leftarrow \mathsf{Ber}^{\otimes n}(2^{\mathsf{x}}\omega_0)$.

$$\mathcal{O}_0(x) \approx \mathsf{LPN}(2^x \omega_0|\mathbf{t}|)$$
 and $\mathcal{O}_{\mathbf{v}_i}(x) \approx \mathsf{LPN}(2^x \omega_0|\mathbf{t} + \mathbf{v}_i|).$

Define $p(x) \stackrel{\text{def}}{=} \mathbb{P}(\mathcal{A}^{\mathcal{O}_0(x)} \text{ accepts})$.

$$\mathbb{P}(\mathcal{A}^{\mathcal{O}_{\mathbf{v}_i}(\mathsf{x})}\mathsf{accepts}) = p\left(\mathsf{x} + \log rac{|\mathbf{t} + \mathbf{v}_i|}{|\mathbf{t}|}
ight)$$

where

$$\log rac{|\mathbf{t} + \mathbf{v}_i|}{|\mathbf{t}|} = \left\{ egin{array}{l} \log (1 + rac{1}{t}) > 0 & ext{if } i
otin \mathsf{Supp}(\mathbf{t}) \ \leqslant 0 & ext{if } i \in \mathsf{Supp}(\mathbf{t}). \end{array}
ight.$$

Maxime Bombar PhD Defense 7 / 36

Shift your oracles (Cont'd)

Change of behaviour in $\mathbb{P}(\mathcal{A}^{\mathcal{O}_0(x)} \text{ accepts})$ should happen at some point x_0 .

If $i \notin \text{Supp}(\mathbf{t})$, behaviour of $\mathbb{P}(\mathcal{A}^{\mathcal{O}_{\mathbf{v}_i}(x)}\text{accepts})$ changes at some x_0' such that

$$x_0'=x_0+\log\left(1+\frac{1}{t}\right)\approx x_0+\frac{1}{t}.$$

Oracle Comparison Problem from [PRS17]

p is very constrained (Lipschitz etc...) \Rightarrow This can actually be detected in **polynomial time!**

Shifted hybrid argument

What about Structured Variants?

What about Structured Variants?

$$\mathbf{r} \longleftrightarrow \sum_{k} \underbrace{\left(\sum_{i+j\equiv k \mod n} t_i r_j\right)}_{\sim \mathsf{Ber}(\omega|\mathbf{t}|)} X^k$$

What about Structured Variants?

NOT independent ...

Open questions

- → How to make the reduction work in the structured case?
- → Find better smoothing bounds to improve the reduction?

Outline

- 6 The OCP Framework
- 7 The case of LAPIN
- 8 MPC applications
- 9 The curious case of \mathbb{F}_2

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X))$$
 with $F(X) = F_1(X) \cdots F_{r/d}(X)$, $\deg F_i = d$.

- Samples $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$
- $e(X) = e_0 + e_1 X + \dots + e_{r-1} X^{r-1} \leftarrow Ber_q(\omega)[X]_{\leqslant r-1}$

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X))$$
 with $F(X) = F_1(X) \cdots F_{r/d}(X)$, $\deg F_i = d$.

- Samples $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$
- $e(X) = e_0 + e_1 X + \dots + e_{r-1} X^{r-1} \leftarrow Ber_q(\omega)[X]_{\leqslant r-1}$

Not Galois invariant ...

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X))$$
 with $F(X) = F_1(X) \cdots F_{r/d}(X)$, $\deg F_i = d$.

- Samples $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$
- $e(X) = e_0 + e_1 X + \dots + e_{r-1} X^{r-1} \leftarrow Ber_q(\omega)[X]_{\leqslant r-1}$

Not Galois invariant ...

Idea: Change the basis!

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X))$$
 with $F(X) = F_1(X) \cdots F_{r/d}(X)$, $\deg F_i = d$.

- Samples $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s} + \mathbf{e})$
- $\mathbf{e}(X) = e_0 \beta_0 + e_1 \beta_1 + \dots + e_{r-1} \beta_{r-1}; \quad \beta_i \leftarrow \mathsf{Ber}_q(\omega)$

Normal Distribution

- $\mathcal{R} \simeq {}^{\mathcal{O}_K}/{}_{\mathcal{TO}_K}$ with **explicit** Carlitz extension K.
- $\mathcal{O}_{\mathcal{K}/\mathcal{T}_{\mathcal{O}_{\mathcal{K}}}}$ admits **many** Galois invariant \mathbb{F}_q -basis.
- Decision Ring-LPN with respect to such a basis is as hard as Search.

Outline

- 6 The OCP Framework
- 7 The case of LAPIN
- 8 MPC applications
- 9 The curious case of \mathbb{F}_2

Additive Secret Sharing

$$\mathbf{x}_1 \stackrel{\mathrm{def}}{=} \mathbf{x} - \mathbf{x}_2 \approx \$$$
 \mathbf{y}_1

$$\mathbf{y}_2 \stackrel{\mathrm{def}}{=} \mathbf{y} - \mathbf{y}_1 \approx \$$$

Additive reconstruction

$$\begin{aligned} \mathbf{x}_1 + \mathbf{x}_2 &= \mathbf{x} \\ \mathbf{y}_1 + \mathbf{y}_2 &= \mathbf{y} \end{aligned}$$

Secure Multiparty Computation over \mathbb{F}_q

- Shares $(x + y) = Shares(x) + Shares(y) \Rightarrow free \checkmark$
- Shares $(\lambda \mathbf{x}) = \lambda \text{Shares}(\mathbf{x}) \Rightarrow \text{free} \checkmark$
- Multiplications ⇒ Require communication ⇒ Costly X.

f(x, y)

Beaver's idea [Bea91]²: Correlated Randomness

Assume each party has additive shares of a random multiplication $(\mathbf{a}, \mathbf{b}, \mathbf{c} = \mathbf{a} \cdot \mathbf{b})$.

Maxime Bombar PhD Defense 15 / 36

¹Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO '91

Beaver's idea [Bea91]²: Correlated Randomness

Assume each party has additive shares of a random multiplication $(\mathbf{a}, \mathbf{b}, \mathbf{c} = \mathbf{a} \cdot \mathbf{b})$.

 $\mathbf{x_1},\mathbf{y_1}\\\mathbf{a_1},\mathbf{b_1},\mathbf{c_1}$

$$egin{aligned} lpha &= \mathbf{x} + \mathbf{a} \ eta &= \mathbf{y} + \mathbf{b} \end{aligned}$$

$$\mathbf{x}_2, \mathbf{y}_2$$
 $\mathbf{a}_2, \mathbf{b}_2, \mathbf{c}_2$

 α and β totally hide x and y.

Maxime Bombar PhD Defense 15 / 36

 $^{^1}$ Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO '91

Beaver's idea [Bea91]²: Correlated Randomness

Assume each party has additive shares of a random multiplication $(a, b, c = a \cdot b)$.

 $\mathbf{x}_1, \mathbf{y}_1$

$$\alpha = \mathbf{x} + \mathbf{a}$$
$$\beta = \mathbf{y} + \mathbf{b}$$

$$\mathbf{x}_2, \mathbf{y}_2$$

 $\mathbf{a}_2, \mathbf{b}_2, \mathbf{c}_2$

$$\mathbf{x} \cdot \mathbf{y} = (\mathbf{x} + \mathbf{a} - \mathbf{a}) \cdot (\mathbf{y} + \mathbf{b} - \mathbf{b})$$
$$= (\alpha - \mathbf{a}) \cdot (\beta - \mathbf{b})$$
$$= \alpha \cdot \beta - \alpha \cdot \mathbf{b} - \beta \cdot \mathbf{a} + \mathbf{c}$$

PhD Defense

 $^{^1}$ Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO '91

The Correlated Randomness Model

Fast online protocol using one triple per multiplication

How to efficiently distribute many ($N \approx 2^{20}, 2^{30}$) random multiplication triple?

Another Correlation: Oblivious Linear Evaluations

OLE correlation

$$(\mathbf{U}, \mathbf{X}, \mathbf{V}, \mathbf{Y})$$
 such that $\mathbf{U} \cdot \mathbf{V} = \mathbf{X} + \mathbf{Y}$.

2 OLE = 1 Beaver

Maxime Bombar PhD Defense 18 / 36

One OLE to Rule them All

Goal: Distribute **a lot** of random OLE's over \mathbb{F}_q .

Wishful thinking. ([BCGIKS20] 3) Take a ring $\mathcal{R}\simeq \mathbb{F}_q imes \cdots imes \mathbb{F}_q$

³ Efficient Pseudorandom Correlation Generators from Ring-LPN, Boyle, Couteau, Gilboa, Ishai, Kohl, Sholl - CRYPTO '20

Maxime Bombar PhD Defense 19 / 36

Pseudorandom Correlation Generator (PCG)

There exists a protocol to efficiently distribute additive shares of sparse vectors.⁴

Idea: Take
$$\mathcal{R} = \mathbb{F}_q[X]/(F(X))$$
 where $F(X)$ splits completely.

- Sample randomly $\mathbf{a} \leftarrow \mathcal{R}$.
- Set $\mathbf{U} \stackrel{\mathrm{def}}{=} \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1 \approx^? \$$

Where \mathbf{e}_i , \mathbf{f}_i are random **sparse** polynomials.

• Set $\mathbf{V} \stackrel{\text{def}}{=} \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2 \approx^? \$$

$$\mathbf{U} \cdot \mathbf{V} = \mathbf{a}^2(\mathbf{e}_1 \mathbf{e}_2) + \mathbf{a}(\mathbf{e}_1 \mathbf{f}_2 + \mathbf{e}_2 \mathbf{f}_1) + \mathbf{f}_1 \mathbf{f}_2$$

Maxime Bombar PhD Defense 21/36

⁴Function secret sharing, Boyle, Gilboa, Ishai - EUROCRYPT '15

There exists a protocol to efficiently distribute additive shares of sparse vectors.⁴

Idea: Take
$$\mathcal{R} = \mathbb{F}_q[X]/(F(X))$$
 where $F(X)$ splits completely.

- Sample randomly $\mathbf{a} \leftarrow \mathcal{R}$.
- Set $\mathbf{U} \stackrel{\mathrm{def}}{=} \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1 \approx^? \$$

Where \mathbf{e}_i , \mathbf{f}_i are random **sparse** polynomials.

• Set $\mathbf{V} \stackrel{\text{def}}{=} \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2 \approx^? \$$

$$\mathbf{U} \cdot \mathbf{V} = \mathbf{a}^2 (\mathbf{e}_1 \mathbf{e}_2) + \mathbf{a} (\mathbf{e}_1 \mathbf{f}_2) + (\mathbf{e}_2 \mathbf{f}_1) + (\mathbf{f}_1 \mathbf{f}_2)$$

= Linear combination of *somewhat* sparse polynomials.

Maxime Bombar PhD Defense 21/36

⁴Function secret sharing, Boyle, Gilboa, Ishai - EUROCRYPT '15

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X)) \simeq \mathbb{F}_q \times \cdots \times \mathbb{F}_q$$

$$\mathbf{U} = \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1 \approx^? \$$$

$$\mathbf{V} = \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2 \approx^? \$$$

Locally compute U, SHARE(UV) $\Rightarrow OLE$'s over \mathbb{F}_q via CRT

$$SEED_B = (\mathbf{a}, \mathbf{e}_2, \mathbf{f}_2, SHARES(\mathbf{e}_i \mathbf{f}_j))$$

Locally Compute V, SHARE(UV) \Rightarrow OLE's over \mathbb{F}_a via CRT

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X)) \simeq \mathbb{F}_q \times \cdots \times \mathbb{F}_q \implies ext{Only works for large } q$$

$$\mathbf{U} = \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1 \approx^? \$$$

$$\mathbf{V} = \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2 \approx^? \$$$

$$SEED_{\mathcal{A}} = (\mathbf{a}, \mathbf{e}_1, \mathbf{f}_1, SHARES(\mathbf{e}_i \mathbf{f}_j))$$

Locally compute U, SHARE(UV) $\Rightarrow OLE's \text{ over } \mathbb{F}_q \text{ via } CRT$

$$SEED_{\mathcal{B}} = (\mathbf{a}, \mathbf{e}_2, \mathbf{f}_2, SHARES}(\mathbf{e}_i \mathbf{f}_j))$$

Locally Compute V, SHARE(UV) \Rightarrow OLE's over \mathbb{F}_a via CRT

$$\mathcal{R} = \mathbb{F}_q[X]/(F(X)) \simeq \mathbb{F}_q \times \cdots \times \mathbb{F}_q \Rightarrow ext{Only works for large } q$$

$$\mathbf{U} = \mathbf{a} \cdot \mathbf{e}_1 + \mathbf{f}_1 \approx^? \$$$

$$\mathbf{V} = \mathbf{a} \cdot \mathbf{e}_2 + \mathbf{f}_2 \approx^? \$$$

$$SEED_{\mathcal{A}} = (\mathbf{a}, \mathbf{e}_1, \mathbf{f}_1, SHARES(\mathbf{e}_i \mathbf{f}_j))$$

Locally compute U, SHARE(UV) $\Rightarrow OLE$'s over \mathbb{F}_q via CRT

$$SEED_B = (\mathbf{a}, \mathbf{e}_2, \mathbf{f}_2, SHARES(\mathbf{e}_i \mathbf{f}_j))$$

Locally Compute V, SHARE(UV) \Rightarrow OLE's over \mathbb{F}_q via CRT

Quasi-Abelian (Syndrome) Decoding

Search version

Data. Random $\mathbf{H} \leftarrow \mathbb{F}_q[G]^{(\ell-k)\times \ell}$, a target weight $t \leqslant n$ and $\mathbf{s} \in \mathbb{F}_q[G]^{\ell-k}$.

Goal. Find $\mathbf{e} = (\mathbf{e}_1, \dots, \mathbf{e}_\ell) \in \mathbb{F}_q[G]^\ell$ with $|\mathbf{e}_i| = t$ and $\mathbf{H}\mathbf{e}^\top = \mathbf{s}$.

Decision version

Data. Random $\mathbf{H} \leftarrow \mathbb{F}_q[G]^{(\ell-k)\times \ell}$, a target weight $t \leqslant n$ and $\mathbf{y} \in \mathbb{F}_q[G]^{\ell-k}$.

Question. Is y uniform or of the form He^{\top} with $|e_i| = t$?

The linear test framework

Essentially all known ⁵ distinguishers can be expressed as a *linear* function $\mathbf{v} \cdot \mathbf{y}^{\top}$.

 $\mathbf{v} \cdot \mathbf{H} \mathbf{e}^{\top} = \langle \mathbf{v} \mathbf{H}, \mathbf{e} \rangle$ is biased towards 0 if $\mathbf{v} \mathbf{H}$ is *sparse*.

Maxime Bombar PhD Defense 24 / 36

⁵Information Set Decoding, Statistical Decoding, folding ...

Security against linear attacks

No low-weight (non-zero) $vH \iff C^{\perp}$ has good minimum distance

Gilbert-Varshamov bound [FL15]⁶

Random QA codes have minimum distance linear in their length.

Maxime Bombar PhD Defense 25 / 36

⁶Thresholds of Random Quasi-Abelian Codes, Fan, Lin - IEEE-IT

Strong caveat

Consider
$$\mathbf{H} \stackrel{\mathrm{def}}{=} (\mathbf{a}_1 \ \mathbf{a}_2) \in \mathbb{F}_q[G]^{1 \times 2}$$
 and $\mathbf{e} = (\mathbf{e}_1 \ \mathbf{e}_2) \in \mathbb{F}_q[G]^2$.

$$\mathbf{H}\mathbf{e}^{\top} = \mathbf{a}_1 \cdot \mathbf{e}_1 + \mathbf{a}_2 \cdot \mathbf{e}_2 \in \langle \mathbf{a}_1, \mathbf{a}_2 \rangle = \text{ Ideal generated by } \mathbf{a}_1 \text{ and } \mathbf{a}_2.$$

 $\langle \mathbf{a}_1, \mathbf{a}_2 \rangle$ might be *strictly smaller* than $\mathbb{F}_q[G]$.

Restrict to matrices in systematic form:

$$\mathbf{H} = (\mathbf{H}' \mid \mathbf{I}_k).$$

Standard assumption for quasi-cyclic decoding problem (e.g. NIST).

A relevant example

Consider
$$G = \mathbb{Z}/n\mathbb{Z}$$
, so that $\mathcal{R} = \mathbb{F}_q[G] = \mathbb{F}_q[X]/(X^n - 1)$.

Let $\mathbf{a} \leftarrow \mathcal{R}$ be uniformly random, and $\mathbf{e}, \mathbf{f} \in \mathcal{R}$ sparse.

$$\mathbf{a}\cdot\mathbf{e}+\mathbf{f}=\left(\mathbf{a}\mid 1
ight)egin{pmatrix}\mathbf{e}\\\mathbf{f}\end{pmatrix}=\mathbf{H}egin{pmatrix}\mathbf{e}\\\mathbf{f}\end{pmatrix}$$

 $(\mathbf{a}, \mathbf{a} \cdot \mathbf{e} + \mathbf{f})$ is pseudorandom under the hardness of QA-SD.

What happens if not a quasi-group code?

Consider the ring
$$\mathcal{R}=\mathbb{F}_q[X]/(X^q-X)\simeq \underbrace{\mathbb{F}_q imes\cdots imes\mathbb{F}_q}_{q \text{ copies}}.$$

- $\quad \textbf{a} \leftarrow \mathcal{R}$
- e, f sparse
- $\mathbf{y} \stackrel{\mathrm{def}}{=} \mathbf{a} \cdot \mathbf{e} + \mathbf{f}$

$$\mathbf{y}(0) = \mathbf{a}(0) \cdot \mathbf{e}(0) + \mathbf{f}(0) \mod (X^q - X)$$

A simple linear attack

- e, f sparse $\Rightarrow y(0) = 0$ with high probability.
- Compatible with reduction $\mod(X^q X)$

Not possible over
$$\mathbb{F}_q[X]/(X^{q-1}-1)=\mathbb{F}_q[\mathbb{Z}/(q-1)\mathbb{Z}]!$$

A multivariate setting

Goal. Find
$$G$$
 such that $\mathbb{F}_q[G]\simeq \underbrace{\mathbb{F}_q\times\cdots\times\mathbb{F}_q}_{ extit{N copies}}$ with $extit{N}\gg 1.$

A multivariate setting

Goal. Find G such that $\mathbb{F}_q[G]\simeq \underbrace{\mathbb{F}_q\times\cdots\times\mathbb{F}_q}_{N\text{ copies}}$ with $N\gg 1$.

Idea. Take
$$G = (\mathbb{Z}/(q-1)\mathbb{Z})^t$$
 for some $t \geqslant 1$.
$$\mathbb{F}_q[G] = \mathbb{F}_q[X_1,\ldots,X_t]/(X_1^{q-1}-1,\ldots,X_t^{q-1}-1)$$

$$= \prod_{(\zeta_1,\ldots,\zeta_t)\in(\mathbb{F}_q^\times)^t} \mathbb{F}_q[X_1,\ldots,X_t]/(X_1-\zeta_1,\ldots,X_t-\zeta_t)$$

$$= \underbrace{\mathbb{F}_q\times\cdots\times\mathbb{F}_q}_{(q-1)^t \text{ copies}}$$

With q=3, choose t=20 to get $N=2^{20}$ OLE correlations over \mathbb{F}_3 .

Efficiency

- The codes have *huge* length N = |G|, but we need a *fast* encoding algorithm.
- This amounts to efficiently computing products in $\mathbb{F}_q[G]$ (need $\tilde{O}(N)$).

 \Longrightarrow FFT algorithm in $\mathbb{F}_q[G]$. Depends on the Jordan-Hölder series of G.

Products in $\mathbb{F}_q[(\mathbb{Z}/(q-1)\mathbb{Z})^t]$: $O(t \times (q-1)^t) = O(N \log(N))$ operations in \mathbb{F}_q .

Outline

- 6 The OCP Framework
- 7 The case of LAPIN
- 8 MPC applications
- **9** The curious case of \mathbb{F}_2

Limit of our approach

- Is it possible to go to F₂?
- Obviously, we cannot set q = 2 in the above construction.
- Most natural approach would be using the ring of boolean functions

$$\mathcal{R} = \mathbb{F}_2[X_1, \dots, X_t]/(X_1^2 - X_1, \dots, X_t^2 - X_t).$$

▲This is NOT a group algebra.

Vulnerable to a simple attack.

The curious case of \mathbb{F}_2

In fact we have the following theorem

There is no group
$$G$$
 such that $\mathbb{F}_2[G] = \underbrace{\mathbb{F}_2 \times \cdots \times \mathbb{F}_2}_{N \text{ times}}$ unless $G = \{1\}$ and $N = 1$.

Proof.
$$G \subset \mathbb{F}_2[G]^{\times}$$
 and $|(\mathbb{F}_2 \times \cdots \times \mathbb{F}_2)^{\times}| = 1$.

Towards \mathbb{F}_2

Towards \mathbb{F}_2 ?

• There exists G and a ring \mathcal{R} endowed with an action of G such that

$$\mathbb{F}_2[\mathit{G}] \underset{\textit{As modules}}{ \simeq} \mathcal{R} \underset{\textit{As algebras}}{ \simeq} \mathbb{F}_2 \times \cdots \times \mathbb{F}_2$$

- G identifies as the Galois group of some Carlitz extension of $\mathbb{F}_2(T)$.
- Needs more work on the MPC side....
- Additive FFT in $\mathbb{F}_2[G]$?

A proposed construction

Set $K_{\ell} \stackrel{\text{def}}{=} \mathbb{F}_2(T)[\Lambda_{T\ell+1}]$, and $\mathcal{O}_{K_{\ell}} \stackrel{\text{def}}{=} \mathbb{F}_2[T][\Lambda_{T\ell+1}]$,

- \mathcal{O}_L has a Local normal integral basis at T+1
- $\mathcal{O}_{L/(T+1)\mathcal{O}_{L}} \simeq \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}$

Maxime Bombar 34 / 36

Explicit Example with Magma $(\ell=25)$

$$\mathcal{O}_{\mathcal{K}}/(T+1)\mathcal{O}_{\mathcal{K}} \cong \mathbb{F}_2[X]/(P(X)) \cong \underbrace{\mathbb{F}_{2^{32}} \times \cdots \times \mathbb{F}_{2^{32}}}_{2^{20} \text{ copies}}$$

with

$$P(X) = 1 + X + X^{2} + X^{256} + X^{512} + X^{2^{16}} + X^{2^{17}} + X^{2^{24}} + X^{2^{25}}$$

and

$$\mathcal{O}_{L/(T+1)\mathcal{O}_{L}} = \left\{ F(X) \in \mathbb{F}_{2}[X]/(P(X)) \mid F(X^{2}) = F(X) \right\}$$

$$= \underbrace{\mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}}_{2^{20} \text{ copies}}$$

Galois Structure

(Chebolu, Lockridge, 2017)

$$G\stackrel{\mathrm{def}}{=} \mathrm{Gal}(K/\mathbb{F}_2(T)) = \left(\mathbb{F}_2[T]/_{(T^n)}\right)^{ imes}$$
 is isomorphic to

$$\bigoplus_{1 \leqslant k < \lceil \log(n) \rceil} \left(\mathbb{Z} / 2^k \mathbb{Z} \right) \left\lceil \frac{n}{2^{k-1}} \right\rceil - 2 \left\lceil \frac{n}{2^k} \right\rceil + \left\lceil \frac{n}{2^{k+1}} \right\rceil.$$