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Public Key Cryptography

Hard Computational Problems

• Integer Factorisation
• (Elliptic Curve) Discrete Logarithm
• Euclidean Lattices
• Coding Theory
• · · ·
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Public Key Cryptography

Quantum Menace (Shor, 1994)

Hard Computational Problems

• Integer Factorisation
• (Elliptic Curve) Discrete Logarithm
• Euclidean Lattices
• Coding Theory

}
Error-Based

• · · ·

Considered for standardisation
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Error-based Cryptography

A , s A + eInput: ∈ Fk×n
q

∈ Fn
qTarget: s





How to choose e ∈ Fn
q to make this problem hard?
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Error-based Cryptography

A , s A + eInput: ∈ Fk×n
q

∈ Fn
qTarget: s





How to choose e ∈ Fn
q to make this problem hard?

• “Small” coefficients: Lattice-based cryptography
• Few non-zero coefficients: (Hamming) Code-based cryptography
• Small “rank”: Rank-based cryptography
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The Decoding Problem (Hamming)

A , s A + e

n

kInput:

Target: s





• Studied for over 60 years (Prange, 1962);
• Hardness depends on the Hamming weight of e;
• Very hard in some regimes.
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Two approaches for Code-Based Encryption

McEliece (1978)
• Oldest cryptosystem currently not (quantumly) broken;
• Does not only relies on the Decoding Problem;
• Many instantiations have been broken (original one still secure).
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Two approaches for Code-Based Encryption

McEliece (1978)
• Oldest cryptosystem currently not (quantumly) broken;
• Does not only relies on the Decoding Problem;
• Many instantiations have been broken (original one still secure).

Alekhnovich (2003)
Truly relies on the Problem of Decoding random linear codes.
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Alekhnovich cryptosystem (2003)

Secret key: s

Public key:

A
,

A + s

H with H s = 0





Maxime Bombar PhD Defense 6 / 43



Alekhnovich Cryptosystem; Encrypt one bit

H +To encrypt 0, send

uniformTo encrypt 1, send
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Alekhnovich Cryptosystem; Decryption

To decrypt a received y ∈ Fn
2 compute ⟨y, s⟩: Distinguisher.

H +




s = s = 0 with high probability

uniform s = uniformly random bit
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The Decisional Decoding Problem

A
,

s A + eDistinguish

From A
,

y uniform








How hard can it be?
Maxime Bombar PhD Defense 9 / 43



The Decisional Decoding Problem

A
,

s A + eDistinguish

From A
,

y uniform








As hard as Decoding Problem (Search-to-Decision Reduction): (Fischer, Stern, 1996)
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Adding Structure for Efficiency



a0 a1 . . . . . . an−1
an−1 a0 . . . . . . an−2

... . . . . . . ...

... . . . . . . ...
a1 a2 . . . an−1 a0


Circulant matrix

A →
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A Polynomial Representation

Bonus: Supports fast operations.



a0 a1 . . . . . . an−1
an−1 a0 . . . . . . an−2

... . . . . . . ...

... . . . . . . ...
a1 a2 . . . an−1 a0

 a(X ) =
n−1∑
i=0

aiX i

a
s s(X ) · a(X ) mod (Xn − 1)
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A Polynomial Representation (Cont’d)

a(0) a(1)

s +
e(0) e(1)


s(X )a(0)(X ) + e(0)(X ) ∈ Fq[X ]

(Xn − 1)

s(X )a(1)(X ) + e(1)(X ) ∈ Fq[X ]
(Xn − 1)
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Structured Variants of the Decoding Problem

R ring, e.g. R = Fq[X ]/(Xn − 1) (Quasi-Cyclic).

Search Version
Input. N samples of the form (a, a · s + e) where a← R, and |e| = t.
Goal. Find s ∈ R.

Decision Version
Goal. Distinguish between (a, yunif) and (a, a · s + e), given N samples.

Remark. BIKE and HQC (NIST 4th round).
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Hardness of Structured Variants

Still believed to be hard in general
Decoding algorithms don’t perform much better with Quasi-Cyclic codes.

At the beginning of this thesis
No search-to-decision reduction.

Natural questions
• Which choices of R yield secure instances?
• Are there other applications than traditional encryption?
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Secure Multi-Party Computation (MPC)

BP

x1

x2

x3 x4

x5

f (x1, . . . , x5)?

Main Bottleneck: Communication
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MPC in the Correlated Randomness Model

A key observation by Beaver (1991)
• It is possible to push the secure computation before the inputs are known using

correlated random sequences.
• This preprocessing remains very slow. ✗

Pseudorandom Correlation Generators (Boyle, Couteau, Gilboa, Ishai 2018, + Kohl, Scholl 2019, 2020)
• Generating correlated randomness with minimal interaction.
• Relies on variants of (Decisional) Decoding Problems.
• Structured variants for more powerful correlations, extension to N parties.

Underlying ring: Fq[X ]
(F (X )) ≃ Fq × · · · × Fq → deg(F ) ⩽ q copies of Fq.

Question: Can we reduce q?
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State of Affairs

Structured codes are very appealing:
• Enable efficient cryptography;
• Even advanced primitives.

But lack of strong foundations:
• No search-to-decision reduction;
• “Exotic” structures less studied.

Lattice-based cryptography has been faced with similar issues:
• Solved with framework from algebraic number theory;
• This is what improved faith in Euclidean lattices compared to codes.
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Structured Lattices: a History of Reductions1

2017

(Lyubashevsky, Peikert
Regev, 2010)

Search-to-Decision reduction
for Ring-LWE

(Peikert, Regev
Stephens-Davidowitz, 2017)

New technique: OHCP
Hardness of decision version
for any ring and modulus.

(Boudgoust, Jeudy,
Roux-Langlois,

Wen, 2020)

(Stehlé, Steinfeld
Tanaka, Xagawa, 2009)

(Langlois,
Stehlé, 2015)

(Rosca, Stehlé,
Wallet, 2018)

(Pellet–Mary,
Stehlé, 2021)

1Not exhaustive
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Codes are Catching-Up

2017

(Lyubashevsky, Peikert
Regev, 2010)

Search-to-Decision reduction
for Ring-LWE

(Peikert, Regev
Stephens-Davidowitz, 2017)

New technique: OHCP
Hardness of decision version
for any ring and modulus.

(Stehlé, Steinfeld
Tanaka, Xagawa, 2009)

(Rosca, Stehlé,
Wallet, 2018)

Lattice-Based

[BCD22] [BCD23]

OHCP technique∗

Code-Based

B., Couvreur, Debris-Alazard
• 2022: On Codes and Learning with Errors over Function Fields
• 2023: Pseudorandomness of Decoding, Revisited: Adapting OHCP to Code-Based Cryptography

→ ∗Caveat when considering the case of structured codes.
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Applications to MPC

|Fq|
2 3 q ⩾ N ≫ 1

[BCCD23] [BCGIKS20]

• B., Couteau, Couvreur, Ducros, 2023: Correlated Pseudorandomness from the Hardness of
Quasi-Abelian Decoding .

• Variant of the Decoding Problem based on Group Algebras (Generalise Quasi-Cyclic).
• “Impossibility” result for q = 2.

Not a timeline
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Cryptanalysis in the Rank-Metric

Fqm-linear codes endowed with the rank-metric: Yet another form of structured codes.

• B., Couvreur, 2021: Decoding Supercodes of Gabidulin Codes and Application to Cryptanalysis
• B., Couvreur, 2022: Right-Hand Side Decoding of Gabidulin Codes and Applications
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A number theoretic framework

Structured lattice problems
Defined using Number Fields and their Rings of Integers.

e.g. R = OK qOK where

• OK = Z[X ]
(Xn + 1), with n = 2ℓ.

• q ∈ Z.

OK K

Z Qq ∈
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Wishful Thinking

Fq[X ]
(Xn − 1) looks similar to Z[X ]

(Xn + 1).

Can we build analogous cryptographic constructions with both rings?

Maxime Bombar PhD Defense 23 / 43



Wishful Thinking

Fq[X ]
(Xn − 1) looks similar to Z[X ]

(Xn + 1).

Can we build analogous cryptographic constructions with both rings?

• Fq[X ]
(Xn − 1) has Krull dimension 0;

• Z[X ]
(Xn + 1) has Krull dimension 1.

→ Analogue of OK qOK instead?
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Gaining Height

Fq[X ]/(Xn − 1)︸ ︷︷ ︸
World of Computations

= Fq[T ][X ]/(T ,Xn + T − 1) = OK/TOK︸ ︷︷ ︸
World of Proofs

OK K

Fq[T ] Fq(T )T ∈

Idea: Number field - Function field analogy
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Number field - Function field analogy

An old analogy
(Informal) Finite extensions of Q and finite extensions of Fq(T ) share many properties.

Q
Z

Prime numbers q ∈ Z

K = Q[X ]
(F (X ))

OK
= Integral closure of Z

Dedekind domain

characteristic 0

Fq(T )
Fq[T ]

Irreducible polynomials Q ∈ Fq[T ]

K = Fq(T )[X ]
(F (T ,X ))

OK
= Integral closure of Fq[T ]

Dedekind domain

characteristic p
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Function Field Decoding Problem - FF-DP

• K = Fq(T )[X ]/(f (T ,X ))

• OK ring of integers

• Q ∈ Fq[T ] irreducible.

• ψ some error distribution over OK/QOK .

OK K

Fq[T ] Fq(T )Q ∈

Search FF-DP
Input. N samples of the form (a, a · s + e) where a← OK/QOK , and e← ψ.
Goal. Find s ∈ OK/QOK .

Decision FF-DP
Goal. Distinguish between (a, yunif) and (a, a · s + e), given N samples.
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Main theorem of [BCD22]

Let K be a function field with constant field Fq, Q ∈ Fq[T ] irreducible.

Assume that
(1) K is a Galois extension of Fq(T ) of not too large degree.

(2) Ideal P = QOK does not ramify and has not too large inertia degree.

(3) For all σ ∈ Gal(K/Fq(T )), if x ← ψ then σ(x)← ψ.

Then solving decision FF-DP is as hard as solving search FF-DP.

Remark. (2) ⇐⇒ P = P1 . . .Pr with Pi prime ideals and OK/Pi = Fqℓ with ℓ small.

Proof similar to Ring-LWE from (Lyubashevsky, Peikert, Regev, 2010).
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How to instantiate FF-DP?

What do we need?

• Galois function field K/Fq(T ) with small field of constants;

• Nice behaviour of places;

• Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.
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Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.

Q[ζn] is built by adding the n-th roots of 1.
What about Fq(T )?

A false good idea
Adding roots of 1 to Fq(T ) yields extension of constants

⇒ We get Fqm(T ).
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Cyclotomic function field (Good idea)

(Carlitz, 1938; Hayes, 1974)

Intuition:
• Qx is endowed with a Z-module structure by n · z def= zn.

• Un = {z ∈ Q | zn = 1} = n-torsion elements.

Idea:
• Z←→ Fq[T ] =⇒ Consider a new Fq[T ]-module structure on Fq(T ).

• Add torsion elements to Fq(T ):

ΛM
def=
{
λ ∈ Fq(T ) | M · λ = 0

}
.

Maxime Bombar PhD Defense 30 / 43



Carlitz Polynomials

For M ∈ Fq[T ] define [M] ∈ Fq(T )[X ] by:
• [1](X ) = X

• [T ](X ) = Xq + TX

• Fq-Linearity + [M1M2](X ) = [M1]([M2](X ))

Fact. [M] is a q-polynomial in X with coefficients in Fq[T ].

Examples:
• For c ∈ Fq, [c](X ) = cX

• [T 2](X ) = (Xq + TX )q + T (Xq + TX ) = Xq2 + (T q + T )Xq + T 2X
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Carlitz Module

Fact. Fq[T ] acts on Fq(T ) by M · z = [M](z).
Fq(T ) endowed with this action is called the Fq-Carlitz module.

• ΛM
def=
{

z ∈ Fq(T ) | [M](z) = 0
}

M-torsion elements ≃ Un.

• Fq(T )[ΛM ] = cyclotomic function field.

• Gal(K/Fq(T )) ≃
(
Fq[T ]

(M)
)×

(Efficiently computable).
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Cyclotomic versus Carlitz

Q
Z

Prime numbers q ∈ Z

Un = ⟨ζ⟩ ≃ Z
(n) (groups)

d | n⇐⇒ Ud ⊂ Un (subgroups)

K = Q[ζ]
OK = Z[ζ]

Gal(K/Q) ≃
(
Z

(n)
)x

Cyclotomic

Fq(T )
Fq[T ]

Irreducible polynomials Q ∈ Fq[T ]

ΛM = ⟨λ⟩ ≃ Fq[T ]
(M) (modules)

D | M ⇐⇒ ΛD ⊂ ΛM (submodules)

K = Fq(T )[λ]
OK = Fq[T ][λ]

Gal(K/Fq(T )) ≃
(
Fq[T ]

(M)
)x

Carlitz
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Important example

[T ](X ) = Xq + TX

ΛT = {z | zq + Tz = 0} = {0} ∪
{
z | zq−1 = −T

}
;

K = Fq(T )(ΛT ) = Fq(T )[X ]
(Xq−1 + T );

OK = Fq[T ][X ]
(Xq−1 + T );

Gal(K/Fq(T )) =
(
Fq[T ]

(T )
)x

= Fx
q;

OK ((T + 1)OK ) = Fq[T ][X ]
(Xq−1 + T ,T + 1) = Fq[X ]

(Xq−1 − 1).
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Totally Split QC–Decoding

• K = Fq(T )[ΛT ], OK (T + 1)OK
= Fq[X ]

(Xq−1 − 1).

• Gal(K/Fq(T )) = F×
q acts on Fq[X ]

(Xq−1 − 1) via

ζ · P(X ) = P(ζX )⇒ Support is Galois invariant!

Search to decision reduction
Decision QC−decoding with underlying ring Fq[X ]

(Xq−1 − 1) is as hard as Search.

Fq[X ]
(Xq−1 − 1) ≃ Fq × · · · × Fq︸ ︷︷ ︸

q−1 copies

→ Ring used for MPC applications!
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Action of a Cyclic Group

Observation. Fq[X ]
(Xq−1 − 1) is endowed with the action of Gal(K/Fq(T )) def= F×

q .

More generally. Z nZ acts linearly upon Fq[X ]
(Xn − 1).

They are examples of Group Algebras.
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Group algebras
Finite (abelian) group G , Fq[G ] =

{∑
g∈G agg | ag ∈ Fq

}
≃ F|G|

q

∑
g∈G

agg

∑
g∈G

bgg

 def=
∑
g∈G

∑
h∈G

ahbh−1g

 g .

G = {1} Fq[G ] = Fq,

G = Z/NZ Fq[G ] = Fq[X ]/(XN − 1),

G = Z/NZ× Z/MZ Fq[G ] = Fq[X ,Y ]/(XN − 1,Y M − 1).

Hamming weight is well-defined given an ordering of G!
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Quasi-abelian codes

A quasi-abelian code is an Fq[G ]-submodule of Fq[G ]ℓ

n def= |G |.

Γ =

γ1,1 . . . γ1,ℓ
... . . . ...

γk,1 . . . γk,ℓ

 ∈ Fq[G ]k×ℓ

C def= {mΓ | m ∈ Fq[G ]k}.

Mγ1,1 Mγ1,2 Mγ1,ℓ

Mγ2,1 Mγ2,2 Mγ2,ℓ

Mγk,1 Mγk,2 Mγk,ℓ

...
...

...

n

ℓn

∈ Fkn×ℓn
q
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Quasi-Abelian Decoding Problem

R def= Fq[G ] abelian group algebra, ψ (sparse) error distribution over R.

Search Version
Input. N samples of the form (a, ⟨a, s⟩+ e) where a← Rℓ, and e← ψ.
Goal. Find s ∈ Rℓ.

Decision Version
Goal. Distinguish between (a, yunif) and (a, ⟨a, s⟩+ e), given N samples.

Generalise both plain (G = {1}) and quasi-cyclic (G = Z/nZ) decoding problems.
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A multivariate setting for MPC applications

Goal. Find G such that Fq[G ] ≃ Fq × · · · × Fq︸ ︷︷ ︸
N copies

with N ≫ 1.
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A multivariate setting for MPC applications
Goal. Find G such that Fq[G ] ≃ Fq × · · · × Fq︸ ︷︷ ︸

N copies

with N ≫ 1.

Idea. Take G = (Z/(q − 1)Z)t for some t ⩾ 1.

Fq[G ] = Fq[X1, . . . ,Xt ]/(Xq−1
1 − 1, . . . ,Xq−1

t − 1)

≃
∏

(ζ1,...,ζt)∈(F×
q )t

Fq[X1, . . . ,Xt ]/(X1 − ζ1, . . . ,Xt − ζt)

≃ Fq × · · · × Fq︸ ︷︷ ︸
(q−1)t copies

• As many copies as wished as long as q ⩾ 3!
• Problem when q = 2. ✗
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Hardness of the Quasi-Abelian Decoding Problem?

• No efficient decoding algorithm, even 50 years after their introduction [W 77].

• Previous Search-to-Decision reduction extends to this instantiation!
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Conclusion and Perspectives

Conclusion.
• A new algebraic framework to unify structured variants of the decoding problem.

• Bring insight on structured variants.

• The group action is the key to the reduction:
→ Naturally appears with the function field framework;
→ Otherwise, seems completely pulled out of a hat.

• More general rings endowed with a group action seems to yield secure variants.
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Perspectives and Future Work

Foundations.
• Improve the analysis of [BCD23] to handle structured codes.

→ Rényi Divergence?
• Extend this OHCP technique to get reduction for other metrics

(e.g. rank metric, Lee metric, ...)?
• Developping new tools to specifically target structured codes.

→ Representation theory?
Applications.

• Circumvent the impossiblity result to make the PCG construction work over F2?
→ (Reverse) Multiplication Friendly Embedding?

• Improving efficiency of the construction
→ Fast computation in (modular) group algebra?

• Implementations.
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From Decoding to LPN [BLVW19, YZ21]

s G + t
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From Decoding to LPN [BLVW19, YZ21]

r ← R

s G + t




r
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From Decoding to LPN [BLVW19, YZ21]

r ← R

s G r + t r
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Building LPN-like Oracle

s G r + t r

s a + t r≈

• Gr ≈? uniform

• (Gr, t · r) are correlated ...
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Building LPN-like Oracle

s G r + t r

s a + t r≈

Statistically close
→ Average-case: Leftover hash lemma
→ Worst-case: Notion of smoothing distribution ([BLVW19, YZ21, DDRT23, DR23])
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Bernoulli Smoothing

(Non Standard) Notation

ri ← Ber(ω) if ri Bernoulli with P(ri = 1) = 1
2 (1− 2−ω).

Remark: Ber(ω1) + Ber(ω2) = Ber(ω1 + ω2).

s G r + t r ≈ s a + Ber(ω|t|)

Smoothing bounds from [DR23]
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A continuous hybrid argument

• (G, y def= sG + t)
• Distinguisher A between LPN(ω0) and LPN(∞).
• A makes N queries to the oracle and has advantage ε.

We build LPN(ω|t|) oracle.

• A can be given any LPN(ω)-like oracle.
• Will accept with some probability p(ω).

• p(ω0) = 1
2 + ε

• p(ω)→ 1
2 − ε as ω →∞

• p(ω) unknown for ω ∈ (ω0,∞)
• But can be estimated via statistical methods.

Acceptance behaviour of A LPN(ω) must change as ω →∞.
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Estimating p(ω)
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Wishful thinking: Testing Support Membership

s G + t




r
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Wishful thinking: Testing Support Membership

s G + t

vi+




r

≈


LPN(ω(|t|+ 1)) If i /∈ Supp(t)

LPN(ω(|t| − 1))
or LPN(ω|t|) Else
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Wishful thinking: Testing Support Membership

s G + t

vi+




r

≈


LPN(ω(|t|+ 1)) If i /∈ Supp(t)

LPN(ω(|t| − 1))
or LPN(ω|t|) Else

Not so easy to distinguish those two situations...
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Shift your oracles

Idea: Zoom in and sample r← Ber⊗n(2xω0).

O0(x) ≈ LPN(2xω0|t|) and Ovi (x) ≈ LPN(2xω0|t + vi |).

Define p(x) def= P(AO0(x) accepts).

P(AOvi (x)accepts) = p
(

x + log |t + vi |
|t|

)
where

log |t + vi |
|t| =


log(1 + 1

t ) > 0 if i /∈ Supp(t)

⩽ 0 if i ∈ Supp(t).
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Shift your oracles (Cont’d)

Change of behaviour in P(AO0(x) accepts) should happen at some point x0.

If i /∈ Supp(t), behaviour of P(AOvi (x)accepts) changes at some x ′
0 such that

x ′
0 = x0 + log

(
1 + 1

t

)
≈ x0 + 1

t .

Oracle Comparison Problem from [PRS17]
p is very constrained (Lipschitz etc...) ⇒ This can actually be detected in polynomial time!
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Shifted hybrid argument
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What about Structured Variants?

a(0) a(1)

s +
t(0) t(1)





r(0)

r(1)

← Ber⊗n(ω)
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What about Structured Variants?

t r ←→
∑

k

 ∑
i+j≡k mod n

ti rj


︸ ︷︷ ︸

∼Ber(ω|t|)

X k
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What about Structured Variants?

t r ←→
∑

k

 ∑
i+j≡k mod n

ti rj


︸ ︷︷ ︸

∼Ber(ω|t|)

X k

NOT independent ...
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Open questions

→ How to make the reduction work in the structured case?
→ Find better smoothing bounds to improve the reduction?

OCP

OHCP OHSP??

Euclidean metric Hamming metric

Other
metrics?
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Considering inertia: the case of LAPIN

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

R = Fq[X ]
(F (X )) with F (X ) = F1(X ) · · ·Fr/d(X ), deg Fi = d .

• Samples (a, a · s + e)
• e(X ) = e0 + e1X + · · ·+ er−1X r−1 ← Berq(ω)[X ]⩽r−1
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Considering inertia: the case of LAPIN
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• Samples (a, a · s + e)
• e(X ) = e0 + e1X + · · ·+ er−1X r−1 ← Berq(ω)[X ]⩽r−1

Not Galois invariant ...

Idea: Change the basis!
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Considering inertia: the case of LAPIN

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

R = Fq[X ]
(F (X )) with F (X ) = F1(X ) · · ·Fr/d(X ), deg Fi = d .

• Samples (a, a · s + e)
• e(X ) = e0β0 + e1β1 + · · ·+ er−1βr−1; βi ← Berq(ω)

Normal Distribution
• R ≃ OK TOK

with explicit Carlitz extension K .

• OK TOK
admits many Galois invariant Fq-basis.

• Decision Ring-LPN with respect to such a basis is as hard as Search.
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Additive Secret Sharing

x1
def= x− x2 ≈ $

y1

x2

y2
def= y− y1 ≈ $

x y

x2 ←$ Fq

y1 ←$ Fq

Additive reconstruction
x1 + x2 = x
y1 + y2 = y
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Secure Multiparty Computation over Fq

• Shares(x + y) = Shares(x) + Shares(y)⇒ free

• Shares(λx) = λShares(x)⇒ free

• Multiplications ⇒ Require communication ⇒ Costly ✗.
×

+ ×λ

f(x, y)

x y
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Beaver’s idea [Bea91]2: Correlated Randomness

Assume each party has additive shares of a random multiplication (a,b, c = a · b).

x1, y1
a1,b1, c1

x2, y2
a2, b2, c2

x1 + a1, y1 + b1

x2 + a2, y2 + b2

1Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO ’91
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Assume each party has additive shares of a random multiplication (a,b, c = a · b).

x1, y1
a1,b1, c1

x2, y2
a2, b2, c2

α = x + a
β = y + b

α and β totally hide x and y.

1Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO ’91
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Beaver’s idea [Bea91]2: Correlated Randomness

Assume each party has additive shares of a random multiplication (a,b, c = a · b).

x1, y1
a1,b1, c1

x2, y2
a2, b2, c2

α = x + a
β = y + b

x · y = (x + a − a) · (y + b− b)
= (α− a) · (β − b)
= α · β − α · b− β · a + c

1Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO ’91
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The Correlated Randomness Model

Shares(ai , bi , ai · bi)

(ai , bi)i⩽N ← (Fq × Fq)N

Fast online protocol using one triple per multiplication

Preprocessing

How to efficiently distribute many (N ≈ 220, 230) random multiplication triple?
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Another Correlation: Oblivious Linear Evaluations

OLE correlation
(U,X,V,Y) such that U · V = X + Y.

OLE functionalitya,−b
x

a · x + b
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2 OLE = 1 Beaver

ZA
def= X1 + U1 ·U2 + X2 ZB

def= Y1 + V1 · V2 + Y2

(U
1,

X 1)

(U
2,

X 2)

(V

1 , Y
1 )

(V2 , Y
2 )

ZA + ZB = (U1 + V2) · (U2 + V1)
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One OLE to Rule them All

Goal: Distribute a lot of random OLE’s over Fq.

Wishful thinking. ([BCGIKS20]3) Take a ring R ≃ Fq × · · · × Fq

ONE OLE over R

Many OLE over Fq

U · V = X + Y

ui · vi = xi + yi

3Efficient Pseudorandom Correlation Generators from Ring-LPN, Boyle, Couteau, Gilboa, Ishai, Kohl, Sholl -
CRYPTO ’20
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Pseudorandom Correlation Generator (PCG)

Minimal interaction

short seedA short seedB

Local Computations Local Computations

Long correlated sequence
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PCG for OLE [BCGIKS20]

There exists a protocol to efficiently distribute additive shares of sparse vectors.4

Idea: Take R = Fq[X ]/(F (X )) where F (X ) splits completely.

• Sample randomly a← R.
• Set U def= a · e1 + f1 ≈? $
• Set V def= a · e2 + f2 ≈? $

Where ei , fi are random sparse polynomials.

U ·V = a2(e1e2) + a(e1f 2 + e2f 1) + f 1f 2

= Linear combination of somewhat sparse polynomials.

4Function secret sharing, Boyle, Gilboa, Ishai - EUROCRYPT ’15
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PCG for OLE [BCGIKS20]

R = Fq[X ]/(F (X )) ≃ Fq × · · · × Fq

U = a · e1 + f 1 ≈? $
V = a · e2 + f 2 ≈? $

SeedA = (a, e1, f 1,Shares(ei f j)) SeedB = (a, e2, f 2,Shares(ei f j))

Locally compute U,Share(UV)
⇒ OLE’s over Fq via CRT

Locally Compute V,Share(UV)
⇒ OLE’s over Fq via CRT

Maxime Bombar PhD Defense 22 / 36



PCG for OLE [BCGIKS20]

R = Fq[X ]/(F (X )) ≃ Fq × · · · × Fq ⇒ Only works for large q

U = a · e1 + f 1 ≈? $
V = a · e2 + f 2 ≈? $

SeedA = (a, e1, f 1,Shares(ei f j)) SeedB = (a, e2, f 2,Shares(ei f j))

Locally compute U,Share(UV)
⇒ OLE’s over Fq via CRT

Locally Compute V,Share(UV)
⇒ OLE’s over Fq via CRT

Maxime Bombar PhD Defense 22 / 36



PCG for OLE [BCGIKS20]

R = Fq[X ]/(F (X )) ≃ Fq × · · · × Fq ⇒ Only works for large q

U = a · e1 + f 1 ≈? $
V = a · e2 + f 2 ≈? $

SeedA = (a, e1, f 1,Shares(ei f j)) SeedB = (a, e2, f 2,Shares(ei f j))

Locally compute U,Share(UV)
⇒ OLE’s over Fq via CRT

Locally Compute V,Share(UV)
⇒ OLE’s over Fq via CRT

Maxime Bombar PhD Defense 22 / 36



Quasi-Abelian (Syndrome) Decoding

Search version
Data. Random H← Fq[G ](ℓ−k)×ℓ, a target weight t ⩽ n and s ∈ Fq[G ]ℓ−k .
Goal. Find e = (e1, . . . , eℓ) ∈ Fq[G ]ℓ with |ei | = t and He⊤ = s.

Decision version
Data. Random H← Fq[G ](ℓ−k)×ℓ, a target weight t ⩽ n and y ∈ Fq[G ]ℓ−k .
Question. Is y uniform or of the form He⊤ with |ei | = t?

Maxime Bombar PhD Defense 23 / 36



The linear test framework

Essentially all known 5 distinguishers can be expressed as a linear function v · y⊤.

Powerful Oracle

H

v

(H, y⊤)

v ·He⊤ = ⟨vH, e⟩ is biased towards 0 if vH is sparse.

5Information Set Decoding, Statistical Decoding, folding ...
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Security against linear attacks

No low-weight (non-zero) vH⇐⇒ C⊥ has good minimum distance

Gilbert-Varshamov bound [FL15]6

Random QA codes have minimum distance linear in their length.

6Thresholds of Random Quasi-Abelian Codes, Fan, Lin - IEEE-IT
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Strong caveat

Consider H def= (a1 a2) ∈ Fq[G ]1×2 and e = (e1 e2) ∈ Fq[G ]2.

He⊤ = a1 · e1 + a2 · e2 ∈ ⟨a1, a2⟩ = Ideal generated by a1 and a2.

⟨a1, a2⟩ might be strictly smaller than Fq[G ].

Restrict to matrices in systematic form:

H = (H′ | Ik).

Standard assumption for quasi-cyclic decoding problem (e.g. NIST).

Maxime Bombar PhD Defense 26 / 36



A relevant example

Consider G = Z/nZ, so that R = Fq[G ] = Fq[X ]/(Xn − 1).

Let a← R be uniformly random, and e, f ∈ R sparse.

a · e + f = (a | 1)
(

e
f

)
= H

(
e
f

)

(a, a · e + f ) is pseudorandom under the hardness of QA-SD.
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What happens if not a quasi-group code?

Consider the ring R = Fq[X ]/(Xq − X ) ≃ Fq × · · · × Fq︸ ︷︷ ︸
q copies

.

• a← R
• e, f sparse
• y def= a · e + f

y(0) = a(0) · e(0) + f (0) mod (Xq − X )

A simple linear attack
• e, f sparse ⇒ y(0) = 0 with high probability.
• Compatible with reduction mod (Xq − X )

Not possible over Fq[X ]/(Xq−1 − 1) = Fq[Z/(q − 1)Z]!
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A multivariate setting

Goal. Find G such that Fq[G ] ≃ Fq × · · · × Fq︸ ︷︷ ︸
N copies

with N ≫ 1.
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A multivariate setting

Goal. Find G such that Fq[G ] ≃ Fq × · · · × Fq︸ ︷︷ ︸
N copies

with N ≫ 1.

Idea. Take G = (Z/(q − 1)Z)t for some t ⩾ 1.
Fq[G ] = Fq[X1, . . . ,Xt ]/(Xq−1

1 − 1, . . . ,Xq−1
t − 1)

=
∏

(ζ1,...,ζt)∈(F×
q )t

Fq[X1, . . . ,Xt ]/(X1 − ζ1, . . . ,Xt − ζt)

= Fq × · · · × Fq︸ ︷︷ ︸
(q−1)t copies

With q = 3, choose t = 20 to get N = 220 OLE correlations over F3.
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Efficiency

• The codes have huge length N = |G |, but we need a fast encoding algorithm.

• This amounts to efficiently computing products in Fq[G ] (need Õ(N)).

=⇒ FFT algorithm in Fq[G ]. Depends on the Jordan-Hölder series of G .

Products in Fq[(Z/(q − 1)Z)t ]: O(t × (q − 1)t) = O(N log(N)) operations in Fq.
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Limit of our approach

• Is it possible to go to F2?
• Obviously, we cannot set q = 2 in the above construction.
• Most natural approach would be using the ring of boolean functions

R = F2[X1, . . . ,Xt ]/(X 2
1 − X1, . . . ,X 2

t − Xt).

△! This is NOT a group algebra.

Vulnerable to a simple attack.
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The curious case of F2

In fact we have the following theorem

There is no group G such that F2[G ] = F2 × · · · × F2︸ ︷︷ ︸
N times

unless G = {1} and N = 1.

Proof. G ⊂ F2[G ]× and |(F2 × · · · × F2)×| = 1.
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Towards F2

Towards F2?
• There exists G and a ring R endowed with an action of G such that

F2[G ] ≃︸︷︷︸
As modules

R ≃︸︷︷︸
As algebras

F2 × · · · × F2

• G identifies as the Galois group of some Carlitz extension of F2(T ).
• Needs more work on the MPC side....
• Additive FFT in F2[G ]?
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A proposed construction
Set Kℓ

def= F2(T )[ΛT ℓ+1 ], and OKℓ

def= F2[T ][ΛT ℓ+1 ],

OK K

OL L

F2[T ] F2(T )T + 1

· · · · · · ··p1 pr

· · · · · · ··P1 Pr

f

N/f H

G

• OL has a Local normal integral basis at T + 1
• OL (T + 1)OL

≃ F2 × · · · × F2
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Explicit Example with Magma (ℓ = 25)

OK (T + 1)OK
≃ F2[X ]

(P(X )) ≃ F232 × · · · × F232︸ ︷︷ ︸
220 copies

with
P(X ) = 1 + X + X 2 + X 256 + X 512 + X 216 + X 217 + X 224 + X 225

and
OL (T + 1)OL

=
{

F (X ) ∈ F2[X ]
(P(X ))

∣∣∣∣∣ F (X 2) = F (X )
}

= F2 × · · · × F2︸ ︷︷ ︸
220 copies

Maxime Bombar PhD Defense 35 / 36



Galois Structure

(Chebolu, Lockridge, 2017)

G def= Gal(K/F2(T )) =
(
F2[T ]

(T n)
)×

is isomorphic to

⊕
1⩽k<⌈log(n)⌉

(
Z

2kZ

)⌈ n
2k−1

⌉
−2
⌈ n

2k

⌉
+
⌈ n

2k+1

⌉
.
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