Structured Codes for Cryptography: from Source of Hardness to Applications

PhD Defense

Maxime Bombar

Under the supervision of Alain Couvreur and Thomas Debris-Alazard

December 15, 2023

Outline

1 Introduction

2 Contributions of this Thesis

3 The Function Field Decoding Problem

4 Beyond Quasi-Cyclicity

5 Conclusion And Perspectives

Public Key Cryptography

Public Key Cryptography

- Integer Factorisation
- (Elliptic Curve) Discrete Logarithm
- Euclidean Lattices $\}$ Error-Based
- Coding Theory
- ...

Quantum Menace (Shor, 1994)
Considered for standardisation

Error-based Cryptography

Target: $\quad \mathbf{s} \in \mathbb{F}_{q}^{n}$

How to choose $\mathbf{e} \in \mathbb{F}_{q}^{n}$ to make this problem hard?

Error-based Cryptography

Target: \square

How to choose $\mathbf{e} \in \mathbb{F}_{q}^{n}$ to make this problem hard?

- "Small" coefficients: Lattice-based cryptography
- Few non-zero coefficients: (Hamming) Code-based cryptography
- Small "rank": Rank-based cryptography

The Decoding Problem (Hamming)

Target: \square s

- Studied for over 60 years (Prange, 1962);
- Hardness depends on the Hamming weight of \mathbf{e};
- Very hard in some regimes.

Two approaches for Code-Based Encryption

McEliece (1978)

- Oldest cryptosystem currently not (quantumly) broken;
- Does not only relies on the Decoding Problem;
- Many instantiations have been broken (original one still secure).

Two approaches for Code-Based Encryption

McEliece (1978)

- Oldest cryptosystem currently not (quantumly) broken;
- Does not only relies on the Decoding Problem;
- Many instantiations have been broken (original one still secure).

Alekhnovich (2003)

Truly relies on the Problem of Decoding random linear codes.

Alekhnovich cryptosystem (2003)

Secret key: $\square||\mathbf{S}| \square| \square$

Alekhnovich Cryptosystem; Encrypt one bit

To encrypt 0 , send

To encrypt 1 , send

Alekhnovich Cryptosystem; Decryption

To decrypt a received $\mathbf{y} \in \mathbb{F}_{2}^{n}$ compute $\langle\mathbf{y}, \mathbf{s}\rangle$: Distinguisher.

The Decisional Decoding Problem

How hard can it be?

The Decisional Decoding Problem

As hard as Decoding Problem (Search-to-Decision Reduction): (Fischer, Stern, 1996)

Adding Structure for Efficiency

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & \ldots & \ldots & a_{n-1} \\
a_{n-1} & a_{0} & \ldots & \ldots & a_{n-2} \\
\vdots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
a_{1} & a_{2} & \ldots & a_{n-1} & a_{0}
\end{array}\right)
$$

Circulant matrix

A Polynomial Representation

Bonus: Supports fast operations.

$$
\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & \cdots & a_{n-1} \\
a_{n-1} & a_{0} & \cdots & \cdots & a_{n-2} \\
\vdots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
a_{1} & a_{2} & \cdots & a_{n-1} & a_{0}
\end{array}\right) \longleftrightarrow \mathbf{a}(X)=\sum_{i=0}^{n-1} a_{i} X^{i}
$$

A Polynomial Representation (Cont'd)

Structured Variants of the Decoding Problem

$$
\mathcal{R} \text { ring, e.g. } \mathcal{R}=\mathbb{F}_{q}[X] /\left(X^{n}-1\right) \text { (Quasi-Cyclic). }
$$

Search Version

Input. N samples of the form $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e})$ where $\mathbf{a} \leftarrow \mathcal{R}$, and $|\mathbf{e}|=t$.
Goal. Find $\mathrm{s} \in \mathcal{R}$.

Decision Version

Goal. Distinguish between $\left(\mathbf{a}, \mathbf{y}^{\text {unif }}\right)$ and $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e})$, given N samples.

Remark. BIKE and HQC (NIST 4th round).

Hardness of Structured Variants

Still believed to be hard in general
Decoding algorithms don't perform much better with Quasi-Cyclic codes.

At the beginning of this thesis

No search-to-decision reduction.

Natural questions

- Which choices of \mathcal{R} yield secure instances?
- Are there other applications than traditional encryption?

Secure Multi-Party Computation (MPC)

Main Bottleneck: Communication

MPC in the Correlated Randomness Model

A key observation by Beaver (1991)

- It is possible to push the secure computation before the inputs are known using correlated random sequences.
- This preprocessing remains very slow. X

Pseudorandom Correlation Generators (Boyle, Couteau, Gilboa, Ishai 2018, + Kohl, Scholl 2019, 2020)

- Generating correlated randomness with minimal interaction.
- Relies on variants of (Decisional) Decoding Problems.
- Structured variants for more powerful correlations, extension to N parties.

$$
\begin{aligned}
\text { Underlying ring: } & \mathbb{F}_{q}[X] /(F(X)) \simeq \mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q} \rightarrow \operatorname{deg}(F) \leqslant q \text { copies of } \mathbb{F}_{q} . \\
\text { Question: } & \text { Can we reduce } q \text { ? }
\end{aligned}
$$

Outline

1 Introduction

2 Contributions of this Thesis

3 The Function Field Decoding Problem

4 Beyond Quasi-Cyclicity

5 Conclusion And Perspectives

State of Affairs

Structured codes are very appealing:

- Enable efficient cryptography;
- Even advanced primitives.

But lack of strong foundations:

- No search-to-decision reduction;
- "Exotic" structures less studied.

Lattice-based cryptography has been faced with similar issues:

- Solved with framework from algebraic number theory;
- This is what improved faith in Euclidean lattices compared to codes.

Structured Lattices: a History of Reductions ${ }^{1}$

(Stehlé, Steinfeld
Tanaka, Xagawa, 2009)
(Langlois,
Stehlé, 2015)

(Rosca, Stehlé,
Wallet, 2018)

(Peikert, Regev
Stephens-Davidowitz, 2017)
(Pellet-Mary,
Stehlé, 2021)

(Boudgoust, Jeudy, Roux-Langlois, Wen, 2020)
New technique: OHCP Hardness of decision version for any ring and modulus.

[^0]
Codes are Catching-Up

(Stehlé, Steinfeld

(Lyubashevsky, Peikert Regev, 2010)

Search-to-Decision reduction for Ring-LWE
(Peikert, Regev
Stephens-Davidowitz, 2017)
New technique: OHCP Hardness of decision version for any ring and modulus.

Lattice-Based

B., Couvreur, Debris-Alazard

- 2022: On Codes and Learning with Errors over Function Fields
- 2023: Pseudorandomness of Decoding, Revisited: Adapting OHCP to Code-Based Cryptography $\rightarrow{ }^{*}$ Caveat when considering the case of structured codes.

Applications to MPC

- B., Couteau, Couvreur, Ducros, 2023: Correlated Pseudorandomness from the Hardness of Quasi-Abelian Decoding.
- Variant of the Decoding Problem based on Group Algebras (Generalise Quasi-Cyclic).
- "Impossibility" result for $q=2$.

Cryptanalysis in the Rank-Metric

$\mathbb{F}_{q^{m}}$ linear codes endowed with the rank-metric: Yet another form of structured codes.

- B., Couvreur, 2021: Decoding Supercodes of Gabidulin Codes and Application to Cryptanalysis
- B., Couvreur, 2022: Right-Hand Side Decoding of Gabidulin Codes and Applications

Outline

1 Introduction

2 Contributions of this Thesis

3 The Function Field Decoding Problem

4 Beyond Quasi-Cyclicity

5 Conclusion And Perspectives

A number theoretic framework

Structured lattice problems

Defined using Number Fields and their Rings of Integers.

e.g. $\mathcal{R}=\mathcal{O}_{K} / q \mathcal{O}_{K}$ where

- $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{n}+1\right)$, with $n=2^{\ell}$.
- $q \in \mathbb{Z}$.

Wishful Thinking

$$
\mathbb{F}_{q}[X] /\left(X^{n}-1\right) \text { looks similar to } \mathbb{Z}[X] /\left(X^{n}+1\right) .
$$

Can we build analogous cryptographic constructions with both rings?

Wishful Thinking

$$
\mathbb{F}_{q}[X] /\left(X^{n}-1\right) \text { looks similar to } \mathbb{Z}[X] /\left(X^{n}+1\right) .
$$

Can we build analogous cryptographic constructions with both rings?

- $\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ has Krull dimension 0 ;
- $\mathbb{Z}[X] /\left(X^{n}+1\right)$ has Krull dimension 1.
\rightarrow Analogue of $\mathcal{O}_{K} / q \mathcal{O}_{K}$ instead?

Gaining Height

$$
\underbrace{\mathbb{F}_{q}[X] /\left(X^{n}-1\right)}_{\text {World of Computations }}=\mathbb{F}_{q}[T][X] /\left(T, X^{n}+T-1\right)=\underbrace{\mathcal{O}_{K} / T \mathcal{O}_{K}}_{\text {World of Proofs }}
$$

Idea: Number field - Function field analogy

Number field - Function field analogy

An old analogy
(Informal) Finite extensions of \mathbb{Q} and finite extensions of $\mathbb{F}_{q}(T)$ share many properties.

\mathbb{Q}
 \mathbb{Z}

Prime numbers $q \in \mathbb{Z}$

$$
K=\mathbb{Q}[X] /(F(X))
$$

\mathcal{O}_{K}
$=$ Integral closure of \mathbb{Z}
Dedekind domain
characteristic 0

$$
\begin{aligned}
& \mathbb{F}_{q}(T) \\
& \mathbb{F}_{q}[T]
\end{aligned}
$$

Irreducible polynomials $Q \in \mathbb{F}_{q}[T]$

$$
\begin{aligned}
& K=\mathbb{F}_{q}(T)[X] /(F(T, X)) \\
& \mathcal{O}_{K} \\
& =\text { Integral closure of } \mathbb{F}_{q}[T]
\end{aligned}
$$

Dedekind domain
characteristic p

Function Field Decoding Problem - FF-DP

- $K=\mathbb{F}_{q}(T)[X] /(f(T, X))$
- \mathcal{O}_{K} ring of integers
- $Q \in \mathbb{F}_{q}[T]$ irreducible.
- ψ some error distribution over $\mathcal{O}_{K} / Q \mathcal{O}_{K}$.

Search FF-DP

Input. N samples of the form $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e})$ where $\mathbf{a} \leftarrow \mathcal{O}_{K} / Q \mathcal{O}_{K}$, and $\mathbf{e} \leftarrow \psi$.
Goal. Find $\mathrm{s} \in \mathcal{O}_{K} / Q \mathcal{O}_{K}$.

Decision FF-DP

Goal. Distinguish between $\left(\mathbf{a}, \mathbf{y}^{\text {unif }}\right)$ and $(\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e})$, given N samples.

Main theorem of [BCD22]

Let K be a function field with constant field $\mathbb{F}_{q}, Q \in \mathbb{F}_{q}[T]$ irreducible.
Assume that
(1) K is a Galois extension of $\mathbb{F}_{q}(T)$ of not too large degree.
(2) Ideal $\mathfrak{P}=Q \mathcal{O}_{K}$ does not ramify and has not too large inertia degree.
(3) For all $\sigma \in \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)$, if $x \leftarrow \psi$ then $\sigma(x) \leftarrow \psi$.

Then solving decision FF-DP is as hard as solving search FF-DP.

Remark. (2) $\Longleftrightarrow \mathfrak{P}=\mathfrak{P}_{1} \ldots \mathfrak{P}_{r}$ with \mathfrak{P}_{i} prime ideals and $\mathcal{O}_{K} / \mathfrak{P}_{i}=\mathbb{F}_{q^{\ell}}$ with ℓ small.
Proof similar to Ring-LWE from (Lyubashevsky, Peikert, Regev, 2010).

How to instantiate FF-DP?

What do we need?

- Galois function field $K / \mathbb{F}_{q}(T)$ with small field of constants;
- Nice behaviour of places;
- Galois invariant distribution.

Ring-LWE instantiation with cyclotomic number fields.

Cyclotomic function field (Bad idea)

We want an analogue of cyclotomic number field.
$\mathbb{Q}\left[\zeta_{n}\right]$ is built by adding the n-th roots of 1 .
What about $\mathbb{F}_{q}(T)$?

A false good idea

Adding roots of 1 to $\mathbb{F}_{q}(T)$ yields extension of constants
\Rightarrow We get $\mathbb{F}_{q^{m}}(T)$.

Cyclotomic function field (Good idea)

(Carlitz, 1938; Hayes, 1974)

Intuition:

- $\overline{\mathbb{Q}}^{x}$ is endowed with a \mathbb{Z}-module structure by $n \cdot z \stackrel{\text { def }}{=} z^{n}$.
- $\mathbb{U}_{n}=\left\{z \in \overline{\mathbb{Q}} \mid z^{n}=1\right\}=n$-torsion elements.

Idea:

- $\mathbb{Z} \longleftrightarrow \mathbb{F}_{q}[T] \Longrightarrow$ Consider a new $\mathbb{F}_{q}[T]$-module structure on $\overline{\mathbb{F}_{q}(T)}$.
- Add torsion elements to $\mathbb{F}_{q}(T)$:

$$
\Lambda_{M} \stackrel{\text { def }}{=}\left\{\lambda \in \overline{\mathbb{F}_{q}(T)} \mid M \cdot \lambda=0\right\} .
$$

Carlitz Polynomials

For $M \in \mathbb{F}_{q}[T]$ define $[M] \in \mathbb{F}_{q}(T)[X]$ by:

- $[1](X)=X$
- $[T](X)=X^{q}+T X$
- \mathbb{F}_{q}-Linearity $+\left[M_{1} M_{2}\right](X)=\left[M_{1}\right]\left(\left[M_{2}\right](X)\right)$

Fact. [M] is a q-polynomial in X with coefficients in $\mathbb{F}_{q}[T]$.

Examples:

- For $c \in \mathbb{F}_{q},[c](X)=c X$
- $\left[T^{2}\right](X)=\left(X^{q}+T X\right)^{q}+T\left(X^{q}+T X\right)=X^{q^{2}}+\left(T^{q}+T\right) X^{q}+T^{2} X$

Carlitz Module

Fact. $\mathbb{F}_{q}[T]$ acts on $\overline{\mathbb{F}_{q}(T)}$ by $M \cdot z=[M](z)$.
$\bar{F}_{q}(T)$ endowed with this action is called the \mathbb{F}_{q}-Carlitz module.

- $\Lambda_{M} \stackrel{\text { def }}{=}\left\{z \in \overline{\mathbb{F}_{q}(T)} \mid[M](z)=0\right\} M$-torsion elements $\simeq \mathbb{U}_{n}$.
- $\mathbb{F}_{q}(T)\left[\Lambda_{M}\right]=$ cyclotomic function field.
- $\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right) \simeq\left(\mathbb{F}_{q}[T] /(M)\right)^{\times}$(Efficiently computable).

Cyclotomic versus Carlitz

$$
\begin{aligned}
& \mathbb{Q} \\
& \mathbb{Z}
\end{aligned}
$$

Prime numbers $q \in \mathbb{Z}$

$$
\begin{gathered}
\mathbb{U}_{n}=\langle\zeta\rangle \simeq \mathbb{Z} /(n) \text { (groups) } \\
d \mid n \Longleftrightarrow \mathbb{U}_{d} \subset \mathbb{U}_{n} \text { (subgroups) } \\
K=\mathbb{Q}[\zeta] \\
\mathcal{O}_{K}=\mathbb{Z}[\zeta] \\
\operatorname{Gal}(K / \mathbb{Q}) \simeq(\mathbb{Z} /(n))^{x}
\end{gathered}
$$

Cyclotomic

$$
\begin{aligned}
& \mathbb{F}_{q}(T) \\
& \mathbb{F}_{q}[T]
\end{aligned}
$$

Irreducible polynomials $Q \in \mathbb{F}_{q}[T]$
$\Lambda_{M}=\langle\lambda\rangle \simeq \mathbb{F}_{q}[T] /(M)$ (modules)
$D \mid M \Longleftrightarrow \Lambda_{D} \subset \Lambda_{M}$ (submodules)

$$
\begin{gathered}
K=\mathbb{F}_{q}(T)[\lambda] \\
\mathcal{O}_{K}=\mathbb{F}_{q}[T][\lambda]
\end{gathered}
$$

$\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right) \simeq\left(\mathbb{F}_{q}[T] /(M)\right)^{x}$

Important example

$$
[T](X)=X^{q}+T X
$$

$$
\begin{aligned}
& \Lambda_{T}=\left\{z \mid z^{q}+T_{z}=0\right\}=\{0\} \cup\left\{z \mid z^{q-1}=-T\right\} \\
& K=\mathbb{F}_{q}(T)\left(\Lambda_{T}\right)=\mathbb{F}_{q}(T)[X] /\left(X^{q-1}+T\right)^{\prime} \\
& \mathcal{O}_{K}=\mathbb{F}_{q}[T][X] /\left(X^{q-1}+T\right)^{\prime} \\
& \operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)=\left(\mathbb{F}_{q}[T] /(T)\right)^{x}=\mathbb{F}_{q}^{x} \\
& \mathcal{O}_{K} /\left((T+1) \mathcal{O}_{K}\right)=\mathbb{F}_{q}[T][X] /\left(X^{q-1}+T, T+1\right)=\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)
\end{aligned}
$$

Totally Split QC-Decoding

- $K=\mathbb{F}_{q}(T)\left[\Lambda_{T}\right]$,

$$
\mathcal{O}_{K} /(T+1) \mathcal{O}_{K}=\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right) .
$$

- $\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right)=\mathbb{F}_{q}^{\times}$acts on $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)^{\text {via }}$

$$
\zeta \cdot P(X)=P(\zeta X) \Rightarrow \text { Support is Galois invariant! }
$$

Search to decision reduction

Decision $Q C$-decoding with underlying ring $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)$ is as hard as Search.
$\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right) \simeq \underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{q-1 \text { copies }} \rightarrow$ Ring used for MPC applications!

Outline

1 Introduction

2 Contributions of this Thesis

3 The Function Field Decoding Problem

4 Beyond Quasi-Cyclicity

5 Conclusion And Perspectives

Action of a Cyclic Group

Observation. $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)$ is endowed with the action of $\operatorname{Gal}\left(K / \mathbb{F}_{q}(T)\right) \stackrel{\text { def }}{=} \mathbb{F}_{q}^{\times}$.
More generally. $\mathbb{Z} / n \mathbb{Z}$ acts linearly upon $\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$.

They are examples of Group Algebras.

Group algebras

Finite (abelian) group $G, \quad \mathbb{F}_{q}[G]=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in \mathbb{F}_{q}\right\} \simeq \mathbb{F}_{q}^{|G|}$

$$
\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{g \in G} b_{g} g\right) \stackrel{\text { def }}{=} \sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{h^{-1} g}\right) g .
$$

$$
\begin{array}{ll}
G=\{1\} & \mathbb{F}_{q}[G]=\mathbb{F}_{q}, \\
G=\mathbb{Z} / N \mathbb{Z} & \mathbb{F}_{q}[G]=\mathbb{F}_{q}[X] /\left(X^{N}-1\right), \\
G=\mathbb{Z} / N \mathbb{Z} \times \mathbb{Z} / M \mathbb{Z} & \mathbb{F}_{q}[G]=\mathbb{F}_{q}[X, Y] /\left(X^{N}-1, Y^{M}-1\right) .
\end{array}
$$

Hamming weight is well-defined given an ordering of G !

Quasi-abelian codes

A quasi-abelian code is an $\mathbb{F}_{q}[G]$-submodule of $\mathbb{F}_{q}[G]^{\ell}$

$$
n \stackrel{\text { def }}{=}|G| .
$$

$$
\boldsymbol{\Gamma}=\left(\begin{array}{ccc}
\gamma_{1,1} & \ldots & \gamma_{1, \ell} \\
\vdots & \ddots & \vdots \\
\gamma_{k, 1} & \ldots & \gamma_{k, \ell}
\end{array}\right) \in \mathbb{F}_{q}[G]^{k \times \ell}
$$

$$
\mathcal{C} \stackrel{\text { def }}{=}\left\{\mathbf{m} \boldsymbol{\Gamma} \mid \mathbf{m} \in \mathbb{F}_{q}[G]^{k}\right\} .
$$

Quasi-Abelian Decoding Problem

$$
\mathcal{R} \stackrel{\text { def }}{=} \mathbb{F}_{q}[G] \text { abelian group algebra, } \psi \text { (sparse) error distribution over } \mathcal{R} .
$$

Search Version

Input. N samples of the form $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+\mathbf{e})$ where $\mathbf{a} \leftarrow \mathcal{R}^{\ell}$, and $\mathbf{e} \leftarrow \psi$. Goal. Find $\mathrm{s} \in \mathcal{R}^{\ell}$.

Decision Version

Goal. Distinguish between ($\left.\mathbf{a}, \mathbf{y}^{\text {unif }}\right)$ and ($\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+\mathbf{e}$), given N samples.

Generalise both plain ($G=\{1\}$) and quasi-cyclic ($G=\mathbb{Z} / n \mathbb{Z}$) decoding problems.

A multivariate setting for MPC applications

Goal. Find G such that $\mathbb{F}_{q}[G] \simeq \underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{N \text { copies }}$ with $N \gg 1$.

A multivariate setting for MPC applications

Goal. Find G such that $\mathbb{F}_{q}[G] \simeq \underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{N \text { copies }}$ with $N \gg 1$.
Idea. Take $G=(\mathbb{Z} /(q-1) \mathbb{Z})^{t}$ for some $t \geqslant 1$.

$$
\begin{aligned}
\mathbb{F}_{q}[G] & =\mathbb{F}_{q}\left[X_{1}, \ldots, X_{t}\right] /\left(X_{1}^{q-1}-1, \ldots, X_{t}^{q-1}-1\right) \\
& \simeq \prod_{\left(\zeta_{1}, \ldots, \zeta_{t}\right) \in\left(\mathbb{F}_{q}^{\times}\right)^{t}} \mathbb{F}_{q}\left[X_{1}, \ldots, X_{t}\right] /\left(X_{1}-\zeta_{1}, \ldots, X_{t}-\zeta_{t}\right) \\
& \simeq \underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{(q-1)^{t} \text { copies }}
\end{aligned}
$$

- As many copies as wished as long as $q \geqslant 3$!
- Problem when $q=2$. x

Hardness of the Quasi-Abelian Decoding Problem?

- No efficient decoding algorithm, even 50 years after their introduction [W77].
- Previous Search-to-Decision reduction extends to this instantiation!

Outline

1 Introduction

2 Contributions of this Thesis

3 The Function Field Decoding Problem

4 Beyond Quasi-Cyclicity

5 Conclusion And Perspectives

Conclusion and Perspectives

Conclusion.

- A new algebraic framework to unify structured variants of the decoding problem.
- Bring insight on structured variants.
- The group action is the key to the reduction:
\rightarrow Naturally appears with the function field framework;
\rightarrow Otherwise, seems completely pulled out of a hat.
- More general rings endowed with a group action seems to yield secure variants.

Perspectives and Future Work

Foundations.

- Improve the analysis of [BCD23] to handle structured codes.
\rightarrow Rényi Divergence?
- Extend this OHCP technique to get reduction for other metrics (e.g. rank metric, Lee metric, ...)?
- Developping new tools to specifically target structured codes.
\rightarrow Representation theory?
Applications.
- Circumvent the impossiblity result to make the PCG construction work over \mathbb{F}_{2} ?
\rightarrow (Reverse) Multiplication Friendly Embedding?
- Improving efficiency of the construction
\rightarrow Fast computation in (modular) group algebra?
- Implementations.

Backup Slides

Outline

6 The OCP Framework

7 The case of LAPIN

8 MPC applications
(9 The curious case of \mathbb{F}_{2}

From Decoding to LPN [BLVW19, YZ21]

From Decoding to LPN [BLVW19, YZ21]

From Decoding to LPN [BLVW19, YZ21]

$\leftarrow R$

Building LPN-like Oracle

- $\mathbf{G r} \approx$? uniform
- ($\mathbf{G r}, \mathbf{t} \cdot \mathbf{r})$ are correlated ...

Building LPN-like Oracle

Statistically close

\rightarrow Average-case: Leftover hash lemma
\rightarrow Worst-case: Notion of smoothing distribution ([BLVW19, YZ21, DDRT23, DR23])

Bernoulli Smoothing

(Non Standard) Notation

$$
r_{i} \leftarrow \operatorname{Ber}(\omega) \text { if } r_{i} \text { Bernoulli with } \mathbb{P}\left(r_{i}=1\right)=\frac{1}{2}\left(1-2^{-\omega}\right) \text {. }
$$

Remark: $\operatorname{Ber}\left(\omega_{1}\right)+\operatorname{Ber}\left(\omega_{2}\right)=\operatorname{Ber}\left(\omega_{1}+\omega_{2}\right)$.

Smoothing bounds from [DR23]

A continuous hybrid argument

- $(\mathbf{G}, \mathbf{y} \stackrel{\text { def }}{=} \mathbf{s G}+\mathbf{t})$
- Distinguisher \mathscr{A} between $\operatorname{LPN}\left(\omega_{0}\right)$ and $\operatorname{LPN}(\infty)$.

We build $\operatorname{LPN}(\omega|\mathbf{t}|)$ oracle.

- \mathscr{A} makes N queries to the oracle and has advantage ε.
- \mathscr{A} can be given any $\operatorname{LPN}(\omega)$-like oracle.
- Will accept with some probability $p(\omega)$.
- $p\left(\omega_{0}\right)=\frac{1}{2}+\varepsilon$
- $p(\omega) \rightarrow \frac{1}{2}-\varepsilon$ as $\omega \rightarrow \infty$
- $p(\omega)$ unknown for $\omega \in\left(\omega_{0}, \infty\right)$
- But can be estimated via statistical methods.

Acceptance behaviour of $\mathscr{A}^{\mathrm{LPN}(\omega)}$ must change as $\omega \rightarrow \infty$.

Estimating $p(\omega)$

Wishful thinking: Testing Support Membership

Wishful thinking: Testing Support Membership

Wishful thinking: Testing Support Membership

Not so easy to distinguish those two situations...

Shift your oracles

Idea: Zoom in and sample $\mathbf{r} \leftarrow \operatorname{Ber}^{\otimes n}\left(2^{x} \omega_{0}\right)$.

$$
\mathcal{O}_{0}(x) \approx \operatorname{LPN}\left(2^{x} \omega_{0}|\mathbf{t}|\right) \quad \text { and } \quad \mathcal{O}_{\mathbf{v}_{i}}(x) \approx \operatorname{LPN}\left(2^{x} \omega_{0}\left|\mathbf{t}+\mathbf{v}_{i}\right|\right)
$$

Define $p(x) \stackrel{\text { def }}{=} \mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{0}(x)}\right.$ accepts $)$.

$$
\mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{\mathbf{v}_{i}}(x)} \text { accepts }\right)=p\left(x+\log \frac{\left|\mathbf{t}+\mathbf{v}_{i}\right|}{|\mathbf{t}|}\right)
$$

where

$$
\log \frac{\left|\mathbf{t}+\mathbf{v}_{i}\right|}{|\mathbf{t}|}= \begin{cases}\log \left(1+\frac{1}{t}\right)>0 & \text { if } i \notin \operatorname{Supp}(\mathbf{t}) \\ \leqslant 0 & \text { if } i \in \operatorname{Supp}(\mathbf{t})\end{cases}
$$

Shift your oracles (Cont'd)

Change of behaviour in $\mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{0}(x)}\right.$ accepts $)$ should happen at some point x_{0}.

If $i \notin \operatorname{Supp}(\mathbf{t})$, behaviour of $\mathbb{P}\left(\mathcal{A}^{\mathcal{O}_{v_{i}}}(x)\right.$ accepts $)$ changes at some x_{0}^{\prime} such that

$$
x_{0}^{\prime}=x_{0}+\log \left(1+\frac{1}{t}\right) \approx x_{0}+\frac{1}{t} .
$$

Oracle Comparison Problem from [PRS17]

p is very constrained (Lipschitz etc...) \Rightarrow This can actually be detected in polynomial time!

Shifted hybrid argument

What about Structured Variants?

What about Structured Variants?

What about Structured Variants?

NOT independent ...

Open questions

\rightarrow How to make the reduction work in the structured case?
\rightarrow Find better smoothing bounds to improve the reduction?

Outline

6 The OCP Framework

7 The case of LAPIN

8 MPC applications

9 The curious case of \mathbb{F}_{2}

Considering inertia: the case of LAPIN

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$
\mathcal{R}=\mathbb{F}_{q}[X] /(F(X)) \text { with } F(X)=F_{1}(X) \cdots F_{r / d}(X), \quad \operatorname{deg} F_{i}=d
$$

- Samples ($\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e}$)
- $\mathbf{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1} \leftarrow \operatorname{Ber}_{q}(\omega)[X]_{\leqslant r-1}$

Considering inertia: the case of LAPIN

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$
\mathcal{R}=\mathbb{F}_{q}[X] /(F(X)) \text { with } F(X)=F_{1}(X) \cdots F_{r / d}(X), \quad \operatorname{deg} F_{i}=d
$$

- Samples ($\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e}$)
- $\mathbf{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1} \leftarrow \operatorname{Ber}_{q}(\omega)[X]_{\leqslant r-1}$

Considering inertia: the case of LAPIN

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$
\mathcal{R}=\mathbb{F}_{q}[X] /(F(X)) \text { with } F(X)=F_{1}(X) \cdots F_{r / d}(X), \quad \operatorname{deg} F_{i}=d
$$

- Samples ($\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e}$)
- $\mathbf{e}(X)=e_{0}+e_{1} X+\cdots+e_{r-1} X^{r-1} \leftarrow \operatorname{Ber}_{q}(\omega)[X]_{\leqslant r-1}$

Idea: Change the basis!

Considering inertia: the case of LAPIN

(Heyse, Kiltz, Lyubashevsky, Paar, Pietrzak, 2012)

$$
\mathcal{R}=\mathbb{F}_{q}[X] /(F(X)) \text { with } F(X)=F_{1}(X) \cdots F_{r / d}(X), \quad \operatorname{deg} F_{i}=d
$$

- Samples ($\mathbf{a}, \mathbf{a} \cdot \mathbf{s}+\mathbf{e}$)
- $\mathbf{e}(X)=e_{0} \beta_{0}+e_{1} \beta_{1}+\cdots+e_{r-1} \beta_{r-1} ; \quad \beta_{i} \leftarrow \operatorname{Ber}_{q}(\omega)$

Normal Distribution

- $\mathcal{R} \simeq \mathcal{O}_{K} / T \mathcal{O}_{K}$ with explicit Carlitz extension K.
- $\mathcal{O}_{K} / T \mathcal{O}_{K}$ admits many Galois invariant $\mathbb{F}_{q^{-}}$-basis.
- Decision Ring-LPN with respect to such a basis is as hard as Search.

Outline

6 The OCP Framework

7 The case of LAPIN

8 MPC applications

9 The curious case of \mathbb{F}_{2}

Additive Secret Sharing

Additive reconstruction

$$
\begin{aligned}
& \mathrm{x}_{1}+\mathrm{x}_{2}=\mathrm{x} \\
& \mathrm{y}_{1}+\mathrm{y}_{2}=\mathbf{y}
\end{aligned}
$$

Secure Multiparty Computation over \mathbb{F}_{q}

- $\operatorname{Shares}(\mathbf{x}+\mathbf{y})=\operatorname{Shares}(\mathbf{x})+\operatorname{Shares}(\mathbf{y}) \Rightarrow$ free
- $\operatorname{Shares}(\lambda \mathbf{x})=\lambda \operatorname{Shares}(\mathbf{x}) \Rightarrow$ free
- Multiplications $\quad \Rightarrow$ Require communication \Rightarrow Costly X.

$f(x, y)$

Beaver's idea [Bea91]²: Correlated Randomness

Assume each party has additive shares of a random multiplication ($\mathbf{a}, \mathbf{b}, \mathbf{c}=\mathbf{a} \cdot \mathbf{b}$).

[^1]
Beaver's idea [Bea91] ${ }^{2}$: Correlated Randomness

Assume each party has additive shares of a random multiplication ($\mathbf{a}, \mathbf{b}, \mathbf{c}=\mathbf{a} \cdot \mathbf{b}$).

α and β totally hide \mathbf{x} and \mathbf{y}.

[^2]
Beaver's idea [Bea91] ${ }^{2}$: Correlated Randomness

Assume each party has additive shares of a random multiplication $(\mathbf{a}, \mathbf{b}, \mathbf{c}=\mathbf{a} \cdot \mathbf{b})$.
$\mathbf{x}_{1}, \mathbf{y}_{1}$
$\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{c}_{1}$

$$
\begin{aligned}
& \alpha=\mathbf{x}+\mathbf{a} \\
& \beta=\mathbf{y}+\mathbf{b}
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{x}_{2}, \mathbf{y}_{2} \\
\mathbf{a}_{2}, \mathbf{b}_{2}, \mathbf{c}_{2}
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{x} \cdot \mathbf{y} & =(\mathbf{x}+\mathbf{a}-\mathbf{a}) \cdot(\mathbf{y}+\mathbf{b}-\mathbf{b}) \\
& =(\alpha-\mathbf{a}) \cdot(\beta-\mathbf{b}) \\
& =\alpha \cdot \beta-\alpha \cdot \mathbf{b}-\beta \cdot \mathbf{a}+\mathbf{c}
\end{aligned}
$$

[^3]
The Correlated Randomness Model

How to efficiently distribute many ($N \approx 2^{20}, 2^{30}$) random multiplication triple?

Another Correlation: Oblivious Linear Evaluations

OLE correlation

($\mathbf{U}, \mathbf{X}, \mathbf{V}, \mathbf{Y}$) such that $\mathbf{U} \cdot \mathbf{V}=\mathbf{X}+\mathbf{Y}$.

2 OLE $=1$ Beaver

One OLE to Rule them All

Goal: Distribute a lot of random OLE's over \mathbb{F}_{q}.

Wishful thinking. ([BCGIKS20] ${ }^{3}$) Take a ring $\mathcal{R} \simeq \mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}$

[^4] CRYPTO '20

Pseudorandom Correlation Generator (PCG)

PCG for OLE [BCGIKS20]

There exists a protocol to efficiently distribute additive shares of sparse vectors. ${ }^{4}$

Idea: Take $\mathcal{R}=\mathbb{F}_{q}[X] /(F(X))$ where $F(X)$ splits completely.

- Sample randomly $\mathbf{a} \leftarrow \mathcal{R}$.
- Set $\mathbf{U} \stackrel{\text { def }}{=} \mathbf{a} \cdot \mathbf{e}_{1}+\mathbf{f}_{1} \approx$? $\$ \quad$ Where $\mathbf{e}_{i}, \mathbf{f}_{i}$ are random sparse polynomials.
- Set $\mathbf{V} \stackrel{\text { def }}{=} \mathbf{a} \cdot \mathbf{e}_{2}+\mathbf{f}_{2} \approx ?$

$$
\mathbf{U} \cdot \mathbf{V}=\mathbf{a}^{2}\left(\mathbf{e}_{1} \mathbf{e}_{2}\right)+\mathbf{a}\left(\mathbf{e}_{1} \mathbf{f}_{2}+\mathbf{e}_{2} \mathbf{f}_{1}\right)+\mathbf{f}_{1} \mathbf{f}_{2}
$$

[^5]
PCG for OLE [BCGIKS20]

There exists a protocol to efficiently distribute additive shares of sparse vectors. ${ }^{4}$

Idea: Take $\mathcal{R}=\mathbb{F}_{q}[X] /(F(X))$ where $F(X)$ splits completely.

- Sample randomly $\mathbf{a} \leftarrow \mathcal{R}$.
- Set $\mathbf{U} \stackrel{\text { def }}{=} \mathbf{a} \cdot \mathbf{e}_{1}+\mathbf{f}_{1} \approx$? $\$ \quad$ Where $\mathbf{e}_{i}, \mathbf{f}_{i}$ are random sparse polynomials.
- Set $\mathbf{V} \stackrel{\text { def }}{=} \mathbf{a} \cdot \mathbf{e}_{2}+\mathbf{f}_{2} \approx ?$

$$
\begin{aligned}
\mathbf{U} \cdot \mathbf{V} & =\mathbf{a}^{2}\left(\mathbf{e}_{1} \mathbf{e}_{2}\right)+\mathbf{a}\left(\mathbf{e}_{1} \mathbf{f}_{2}+\mathbf{e}_{2} \mathbf{f}_{1}\right)+\mathbf{f}_{1} \mathbf{f}_{2} \\
& =\text { Linear combination of somewhat sparse polynomials. }
\end{aligned}
$$

[^6]
PCG for OLE [BCGIKS20]

$$
\begin{gathered}
\mathcal{R}=\mathbb{F}_{q}[X] /(F(X)) \simeq \mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q} \\
\mathbf{U}=\mathbf{a} \cdot \mathbf{e}_{1}+\mathbf{f}_{1} \approx ? \$ \\
\mathbf{V}=\mathbf{a} \cdot \mathbf{e}_{2}+\mathbf{f}_{2} \approx ? \$
\end{gathered}
$$

$\operatorname{SeED}_{A}=\left(\mathbf{a}, \mathbf{e}_{1}, \mathbf{f}_{1}, \operatorname{Shares}\left(\mathbf{e}_{i} \mathbf{f}_{j}\right)\right)$

Locally compute \mathbf{U}, Share(UV)
\Rightarrow OLE's over \mathbb{F}_{q} via CRT

$\operatorname{SEED}_{B}=\left(\mathbf{a}, \mathbf{e}_{2}, \mathbf{f}_{2}, \operatorname{SHARES}\left(\mathbf{e}_{i} \mathbf{f}_{j}\right)\right)$

Locally Compute V, Share(UV)
\Rightarrow OLE's over \mathbb{F}_{q} via CRT

PCG for OLE [BCGIKS20]

$$
\begin{gathered}
\mathcal{R}=\mathbb{F}_{q}[X] /(F(X)) \simeq \mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q} \Rightarrow \text { Only works for large } q \\
\mathbf{U}=\mathbf{a} \cdot \mathbf{e}_{1}+\mathbf{f}_{1} \approx ? \$ \\
\mathbf{V}=\mathbf{a} \cdot \mathbf{e}_{2}+\mathbf{f}_{2} \approx^{? \$}
\end{gathered}
$$

$\operatorname{SeED}_{A}=\left(\mathbf{a}, \mathbf{e}_{1}, \mathbf{f}_{1}, \operatorname{Shares}\left(\mathbf{e}_{i} \mathbf{f}_{j}\right)\right)$

Locally compute \mathbf{U}, Share(UV)
\Rightarrow OLE's over \mathbb{F}_{q} via CRT

$\operatorname{SEED}_{B}=\left(\mathbf{a}, \mathbf{e}_{2}, \mathbf{f}_{2}, \operatorname{SHARES}\left(\mathbf{e}_{i} \mathbf{f}_{j}\right)\right)$

Locally Compute V, Share(UV)
\Rightarrow OLE's over \mathbb{F}_{q} via CRT

PCG for OLE [BCGIKS20]

$$
\begin{gathered}
\mathcal{R}=\mathbb{F}_{q}[X] /(F(X)) \simeq \mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q} \Rightarrow \text { Only works for large } q \\
\mathbf{U}=\mathbf{a} \cdot \mathbf{e}_{1}+\mathbf{f}_{1} \approx^{?} \$ \\
\mathbf{V}=\mathbf{a} \cdot \mathbf{e}_{2}+\mathbf{f}_{2} \approx^{?} \$ \$
\end{gathered}
$$

$\operatorname{SeED}_{A}=\left(\mathbf{a}, \mathbf{e}_{1}, \mathbf{f}_{1}, \operatorname{Shares}\left(\mathbf{e}_{i} \mathbf{f}_{j}\right)\right)$

Locally compute \mathbf{U}, Share(UV)
\Rightarrow OLE's over \mathbb{F}_{q} via CRT

$\operatorname{SEED}_{B}=\left(\mathbf{a}, \mathbf{e}_{2}, \mathbf{f}_{2}, \operatorname{SHARES}\left(\mathbf{e}_{i} \mathbf{f}_{j}\right)\right)$

Locally Compute V, Share(UV)
\Rightarrow OLE's over \mathbb{F}_{q} via CRT

Quasi-Abelian (Syndrome) Decoding

Search version

Data. Random $\mathbf{H} \leftarrow \mathbb{F}_{q}[G]^{(\ell-k) \times \ell}$, a target weight $t \leqslant n$ and $\mathbf{s} \in \mathbb{F}_{q}[G]^{\ell-k}$.
Goal. Find $\mathbf{e}=\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{\ell}\right) \in \mathbb{F}_{q}[G]^{\ell}$ with $\left|\mathbf{e}_{i}\right|=t$ and $\mathbf{H e}^{\top}=\mathbf{s}$.

Decision version

Data. Random $\mathbf{H} \leftarrow \mathbb{F}_{q}[G]^{(\ell-k) \times \ell}$, a target weight $t \leqslant n$ and $\mathbf{y} \in \mathbb{F}_{q}[G]^{\ell-k}$. Question. Is \mathbf{y} uniform or of the form $\mathbf{H e}^{\top}$ with $\left|\mathbf{e}_{i}\right|=t$?

The linear test framework

Essentially all known ${ }^{5}$ distinguishers can be expressed as a linear function $\mathbf{v} \cdot \mathbf{y}^{\top}$.

$$
\mathbf{v} \cdot \mathbf{H e}^{\top}=\langle\mathbf{v H}, \mathbf{e}\rangle \text { is biased towards } 0 \text { if } \mathbf{v H} \text { is sparse. }
$$

[^7]
Security against linear attacks

No low-weight (non-zero) $\mathbf{v H} \Longleftrightarrow \mathcal{C}^{\perp}$ has good minimum distance

Gilbert-Varshamov bound [FL15] ${ }^{6}$

Random QA codes have minimum distance linear in their length.

[^8]
Strong caveat

Consider $\mathbf{H} \stackrel{\text { def }}{=}\left(\mathbf{a}_{1} \mathbf{a}_{2}\right) \in \mathbb{F}_{q}[G]^{1 \times 2}$ and $\mathbf{e}=\left(\mathbf{e}_{1} \mathbf{e}_{2}\right) \in \mathbb{F}_{q}[G]^{2}$.

$$
\mathbf{H e}^{\top}=\mathbf{a}_{1} \cdot \mathbf{e}_{1}+\mathbf{a}_{2} \cdot \mathbf{e}_{2} \in\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}\right\rangle=\text { Ideal generated by } \mathbf{a}_{1} \text { and } \mathbf{a}_{2} .
$$

$$
\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}\right\rangle \text { might be strictly smaller than } \mathbb{F}_{q}[G] .
$$

Restrict to matrices in systematic form:

$$
\mathbf{H}=\left(\mathbf{H}^{\prime} \mid \mathbf{I}_{k}\right) .
$$

Standard assumption for quasi-cyclic decoding problem (e.g. NIST).

A relevant example

Consider $G=\mathbb{Z} / n \mathbb{Z}, \quad$ so that $\mathcal{R}=\mathbb{F}_{q}[G]=\mathbb{F}_{q}[X] /\left(X^{n}-1\right)$.
Let $\mathbf{a} \leftarrow \mathcal{R}$ be uniformly random, and $\mathbf{e}, \mathbf{f} \in \mathcal{R}$ sparse.

$$
\mathbf{a} \cdot \mathbf{e}+\mathbf{f}=(\mathbf{a} \mid 1)\binom{\mathbf{e}}{\mathbf{f}}=\mathbf{H}\binom{\mathbf{e}}{\mathbf{f}}
$$

$(\mathbf{a}, \mathbf{a} \cdot \mathbf{e}+\mathbf{f})$ is pseudorandom under the hardness of QA-SD.

What happens if not a quasi-group code?

Consider the ring $\mathcal{R}=\mathbb{F}_{q}[X] /\left(X^{q}-X\right) \simeq \underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{q \text { copies }}$.

- $\mathbf{a} \leftarrow \mathcal{R}$
- \mathbf{e}, \mathbf{f} sparse
- $\mathbf{y} \stackrel{\text { def }}{=} \mathbf{a} \cdot \mathbf{e}+\mathbf{f}$

$$
\mathbf{y}(0)=\mathbf{a}(0) \cdot \mathbf{e}(0)+\mathbf{f}(0) \quad \bmod \left(X^{q}-X\right)
$$

A simple linear attack

- \mathbf{e}, \mathbf{f} sparse $\Rightarrow \mathbf{y}(0)=0$ with high probability.
- Compatible with reduction $\bmod \left(X^{q}-X\right)$

Not possible over $\mathbb{F}_{q}[X] /\left(X^{q-1}-1\right)=\mathbb{F}_{q}[\mathbb{Z} /(q-1) \mathbb{Z}]$!

A multivariate setting

Goal. Find G such that $\mathbb{F}_{q}[G] \simeq \underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{N \text { copies }}$ with $N \gg 1$.

A multivariate setting

Goal. Find G such that $\mathbb{F}_{q}[G] \simeq \underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{N \text { copies }}$ with $N \gg 1$.

Idea. Take $G=(\mathbb{Z} /(q-1) \mathbb{Z})^{t}$ for some $t \geqslant 1$.

$$
\begin{aligned}
\mathbb{F}_{q}[G] & =\mathbb{F}_{q}\left[X_{1}, \ldots, X_{t}\right] /\left(X_{1}^{q-1}-1, \ldots, X_{t}^{q-1}-1\right) \\
& =\prod_{\left(\zeta_{1}, \ldots, \zeta_{t}\right) \in\left(\mathbb{F}_{q}^{\times}\right)^{t}} \mathbb{F}_{q}\left[X_{1}, \ldots, X_{t}\right] /\left(X_{1}-\zeta_{1}, \ldots, X_{t}-\zeta_{t}\right) \\
& =\underbrace{\mathbb{F}_{q} \times \cdots \times \mathbb{F}_{q}}_{(q-1)^{t} \text { copies }}
\end{aligned}
$$

With $q=3$, choose $t=20$ to get $N=2^{20}$ OLE correlations over \mathbb{F}_{3}.

Efficiency

- The codes have huge length $N=|G|$, but we need a fast encoding algorithm.
- This amounts to efficiently computing products in $\mathbb{F}_{q}[G]$ (need $\tilde{O}(N)$).
\Longrightarrow FFT algorithm in $\mathbb{F}_{q}[G]$. Depends on the Jordan-Hölder series of G.

Products in $\mathbb{F}_{q}\left[(\mathbb{Z} /(q-1) \mathbb{Z})^{t}\right]: O\left(t \times(q-1)^{t}\right)=O(N \log (N))$ operations in \mathbb{F}_{q}.

Outline

6 The OCP Framework

7 The case of LAPIN

8 MPC applications

9 The curious case of \mathbb{F}_{2}

Limit of our approach

- Is it possible to go to \mathbb{F}_{2} ?
- Obviously, we cannot set $q=2$ in the above construction.
- Most natural approach would be using the ring of boolean functions

$$
\mathcal{R}=\mathbb{F}_{2}\left[X_{1}, \ldots, X_{t}\right] /\left(X_{1}^{2}-X_{1}, \ldots, X_{t}^{2}-X_{t}\right)
$$

\triangle This is NOT a group algebra.

Vulnerable to a simple attack.

The curious case of \mathbb{F}_{2}

In fact we have the following theorem
There is no group G such that $\mathbb{F}_{2}[G]=\underbrace{\mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}}_{N \text { times }}$ unless $G=\{1\}$ and $N=1$.

$$
\text { Proof. } G \subset \mathbb{F}_{2}[G]^{\times} \text {and }\left|\left(\mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}\right)^{\times}\right|=1 \text {. }
$$

Towards \mathbb{F}_{2}

Towards \mathbb{F}_{2} ?

- There exists G and a ring \mathcal{R} endowed with an action of G such that

$$
\mathbb{F}_{2}[G] \underbrace{\simeq}_{\text {As modules }} \mathcal{R} \underbrace{\simeq}_{\text {As algebras }} \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}
$$

- G identifies as the Galois group of some Carlitz extension of $\mathbb{F}_{2}(T)$.
- Needs more work on the MPC side....
- Additive FFT in $\mathbb{F}_{2}[G]$?

A proposed construction

Set $K_{\ell} \stackrel{\text { def }}{=} \mathbb{F}_{2}(T)\left[\Lambda_{T^{\ell+1}}\right], \quad$ and $\mathcal{O}_{K_{\ell}} \stackrel{\text { def }}{=} \mathbb{F}_{2}[T]\left[\Lambda_{T^{\ell+1}}\right]$,

- \mathcal{O}_{L} has a Local normal integral basis at $T+1$
- $\mathcal{O}_{L} /(T+1) \mathcal{O}_{L} \simeq \mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}$

Explicit Example with Magma $(\ell=25)$

$$
\mathcal{O}_{K} /(T+1) \mathcal{O}_{K} \simeq \mathbb{F}_{2}[X] /(P(X)) \simeq \underbrace{\mathbb{F}_{2^{32}} \times \cdots \times \mathbb{F}_{2^{32}}}_{2^{20} \text { copies }}
$$

with

$$
P(X)=1+X+X^{2}+X^{256}+X^{512}+X^{2^{16}}+X^{2^{17}}+X^{2^{24}}+X^{2^{25}}
$$

and

$$
\begin{aligned}
\mathcal{O}_{L} /(T+1) \mathcal{O}_{L} & =\left\{F(X) \in \mathbb{F}_{2}[X] /(P(X)) \mid F\left(X^{2}\right)=F(X)\right\} \\
& =\underbrace{\mathbb{F}_{2} \times \cdots \times \mathbb{F}_{2}}_{2^{20} \text { copies }}
\end{aligned}
$$

Galois Structure

(Chebolu, Lockridge, 2017)
$G \stackrel{\text { def }}{=} \operatorname{Gal}\left(K / \mathbb{F}_{2}(T)\right)=\left(\mathbb{F}_{2}[T] /\left(T^{n}\right)\right)^{\times}$is isomorphic to

$$
\bigoplus_{1 \leqslant k<\lceil\log (n)\rceil}\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\left\lceil\frac{n}{2^{k-1}}\right\rceil-2\left\lceil\frac{n}{2^{k}}\right\rceil+\left\lceil\frac{n}{2^{k+1}}\right\rceil} .
$$

[^0]: ${ }^{1}$ Not exhaustive

[^1]: ${ }^{1}$ Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO '91

[^2]: ${ }^{1}$ Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO '91

[^3]: ${ }^{1}$ Efficient multiparty protocols using circuit randomization, Beaver - CRYPTO '91

[^4]: ${ }^{3}$ Efficient Pseudorandom Correlation Generators from Ring-LPN, Boyle, Couteau, Gilboa, Ishai, Kohl, Sholl -

[^5]: ${ }^{4}$ Function secret sharing, Boyle, Gilboa, Ishai - EUROCRYPT '15

[^6]: ${ }^{4}$ Function secret sharing, Boyle, Gilboa, Ishai - EUROCRYPT '15

[^7]: ${ }^{5}$ Information Set Decoding, Statistical Decoding, folding ...

[^8]: ${ }^{6}$ Thresholds of Random Quasi-Abelian Codes, Fan, Lin - IEEE-IT

