Advanced algorithms

Exercise sheet #6 (Solutions) — Approximation algorithms

November 9, 2022

Exercice 1 (TSP with triangle inequality). Let G be a complete graph with n vertices, labelled from 1 to n. To each of the $\frac{1}{2}n(n-1)$ edges (u, v) is associated a distance d(u, v). The traveling salesman looks for a minimum-length tour that starts and ends on 1 and visits every vertex exactly once. The decision version of this problem is NP-complete.

We assume furthermore that the distance d satisfies the triangle inequality: $d(u, v) \leq d(u, w) + d(w, v)$ for any vertex u, v and w.

Let T be a minimum spanning tree, rooted at 1, and let H be the tour obtained by the pre-order depth first traversal of T.

(a) What is the complexity of computing H?

Solution — This is $O(n^2 \log n)$ with Kruskal or Prim algorithm. Can be lowered to $O(n^2)$ with more advances algorithms.

(b) Let H^* be an optimal tour. Show that the length c(T) of T (that is the sum of the distances of the edges in T) is at most the length $c(H^*)$ of H^* .

Solution — If we remove one edge from H^* , we obtain a spanning tree T^* . Therefore $c(H^*) > c(T^*) \ge c(T)$, by minimality of T.

(c) Using the triangle inequality, show that $c(H) \leq 2c(T)$. Deduce an approximation algorithm, with approximation factor 2, for computing an optimal tour.

Solution — Consider the tour L (with repeated vertices) obtained from the depth-first traversal of T: each edge is taken once downward and one upward. It is clear that c(L) = 2c(T). Moreover, H is obtained from L by deleting upward edges: A path of the form $b \to a \to b \to c$ is replaced by $b \to a \to c$ directly, so by the triangle inequality this change cannot increase the distance. Therefore, $c(H) \leq c(L) = 2c(T)$.

So, by the previous question, $c(H) \leq 2c(H^*)$: We have a 2-approximation algorithm.

Exercice 2 (Multiterminal cut (Pâle 2013)). Let G = (V, E) be a connected graph endowed with a weight function $c(e) \ge 0$ for each edge $e \in E$ and with a distinguished subset S of vertices, called *terminals*.

A multiterminal cut of G is a set of edges $F \subseteq E$ whose removal would disconnect all terminals from each other.

The weight of a multiterminal cut is the sum of the weight of its elements. Given S, we aim at computing a minimum-weight multiterminal cut, or rather an approximation.

École polytechnique

(a) Given a multiterminal cut F and $v \in S$, let $G_v[F]$ be the connected component of $G \setminus F$ containing v. Moreover, let F_v be the subset of F of all edges with exactly one end in $G_v[F]$. Show that any path in G from v to any other $w \in S$ has an edge in F_v .

> Solution — Let $w \in S$, $w \neq v$. Let P be a path joining v and w. By definition of a multiterminal cut, P passes through an edge in F. Therefore, it must go out of the connected component $G_v[F]$: It contains an edge with only one end in $G_v[F]$, i.e. that belongs to F_v .

(b) For $v \in S$, let E_v be a minimum-weight set of edges such that any path in G from v to any other $w \in S$ has an edge in E_v . Show that E_v can be computed in polynomial time. What is the complexity of your algorithm ?

Solution -

The idea is to build a flow network from G and consider all vertices $S \setminus \{v\}$ as a single terminal t. The problem would now reduce to finding a v - t cut of minimum capacity in this flow network.

To build the flow network from G, we transform each edge e in two edges e_1, e_2 (to make them directed) both with capacity c(e). Moreover, we add an edge (w, t)for each $w \in S \setminus \{v\}$.

By the max-flow min-cut theorem, a v - t cut can be computed with a flow algorithm such as Edmond-Karp algorithm, in complexity $O(n^2m)$.

(c) Deduce a 2-approximation algorithm for the problem of computing a minimum-weight multiterminal cut.

Solution — Let $U = \bigcup_{v \in S} E_v$. It is a multiterminal cut. Let F^* be a minimum-weight multiterminal cut. By minimality of each E_v , we have $c(F_v^*) \ge c(E_v)$. So that $c(U) \le \sum_{v \in S} c(E_v) \le \sum_{v \in S} c(F_v^*)$. But each edge of F^* can only belong to at most two different F_v^* . So $\sum_v c(F_v^*) \le 2c(F^*)$.

Exercice 3 (Vertex cover with linear programming). Let G = (V, E) be a graph with a weight function $c(v) \ge 0$ on the vertices. We aim at computing an approximate minimum-weight vertex cover of G. Recall that a vertex cover is a set $S \subset V$ so that each edge has at least one end in S.

Consider the following linear program:

minimize
$$\sum_{v \in V} c(v) x_v$$

such that $x_u + x_v \ge 1$, $\forall \{u, v\} \in E$
 $1 \ge x_v \ge 0$, $\forall v \in V$,

with the optimal value λ^* and an optimal solution $(x_n^*)_{v \in V}$.

(a) Let S^* be a minimum-weight vertex cover of G. Show that $c(S^*) \ge \lambda^*$.

Solution — If $x_v^* \in \{0,1\}$, then it is easy to build an optimal solution. Let $S = \{v \in V \mid x_v^*\}$. The constraint $x_u + x_v \ge 1$ for $(u, v) \in E$ ensures that each edge has an end in S, i.e. that S is indeed a vertex cover and λ^* is exactly the weight of a S.

Therefore, vertex covers of G correspond to integer solutions. When we allow x_v to take arbitrary real number values, the minimum cannot be larger ! Hence, $\lambda^* \le c(S^*).$

École polytechnique

PA informatique

Remark. Adding the extra constraint $x_v \in \{0,1\}$ (or more generally $x_v \in \mathbb{Z}$) is called Integer Programming and is significantly harder than Linear Programming.

(b) From the optimal solution $(x_v^*)_{v \in V}$, construct a vertex cover S of G such that $c(S) \leq 2\lambda^*$.

Solution — Let $S = \{v \in V \mid x_i^* \ge \frac{1}{2}\}.$

- For any edge (u, v) ∈ E, we have x^{*}_u + x^{*}_v ≥ 1, so either x^{*}_u ≥ ¹/₂ or x^{*}_v ≥ ¹/₂. Thus, at least one of them will be selected in S which is indeed a vertex cover.
- The set S has only vertices with $x_v^* \ge \frac{1}{2}$. Therefore, the following inequalities hold:

$$\frac{1}{2}c(S) = \sum_{v \in S} c(v)\frac{1}{2} \le \sum_{v \in S} c(v)x_v^* \le \sum_{v \in V} c(v)x_v^* = \lambda^*$$

For further readings, see [?, §11.6].

Exercice 4 (The center selection problem). Let V be a finite set endowed with a distance function $d: V \times V \to [0, \infty)$ which satisfies the usual properties of distance functions:

- Separation: $d(u, v) = 0 \Leftrightarrow u = v$ for all $u, v \in S$,
- Symmetry: d(u, v) = d(v, u) for all $u, v \in S$,
- Triangle inequality: $d(u, v) \le d(u, w) + d(w, v)$ for all $u, v, w \in S$.

For any subset $S \subset V$, we define its covering radius

$$\operatorname{rad}(S) = \max_{v \in V} \min_{s \in S} d(v, s).$$

It is the maximal distance of an element of V to the closest element of S. Given an integer k, a subset S of size $\leq k$ of minimal covering radius is called a set of *centers*.

(a) Let $r \ge 0$ and assume that there exists a subset $S^* \subseteq V$ of k centers such that $\operatorname{rad}(S^*) \le r$. Design a greedy algorithm to compute a $S \subseteq V$ with $\#S \le k$ and $\operatorname{rad}(S) \le 2r$.

 $\begin{array}{ll} Solution & - \\ S \leftarrow \varnothing \\ \textbf{while} \ \ \exists v \in V, d(v,S) > 2r \ \ \textbf{do} \\ S \leftarrow S \cup \{v\} \\ \textbf{end while} \end{array}$

By design, $rad(S) \leq 2r$, it only remains to show that $\#S \leq k$. For each v that is added to S there is some $c_v \in S^*$ such that $d(c_v, v) \leq r$, by hypothesis. We want to prove that this c_v is unique for each v.

For any distinct $v, w \in S$, d(v, w) > 2r, by design, and, $2r < d(v, w) \leq d(v, c_v) + d(c_v, c_w) + d(c_w, w) \leq 2r + d(c_v, c_w)$, by the triangle inequality. It follows that $c_v \neq c_w$.

Therefore, the map $v \mapsto c_v$ defines an injection from S to S^* , so $\#S \leq \#S^*$.

(b) Let r^* be the minimum value of $\operatorname{rad}(S^*)$, for $S^* \subseteq V$ and $\#S^* = k$. Design an algorithm to compute in polynomial time a $S \subseteq V$ with $\#S \leq k$ and $\operatorname{rad}(S) \leq 2r^*$.

École polytechnique

PA informatique

Solution — We can try to guess r^* and apply the previous algorithm. Note that r^* belongs to the finite set $\{d(v, w) \mid v, w \in V\}$. This gives the following algorithm (which we can refine using dichotomy).

 $\begin{array}{l} D \leftarrow \{d(v,w) \mid v, w \in V\} \\ \textit{for } r \in D, \ by \ increasing \ order \ \textit{do} \\ S \leftarrow \varnothing \\ \textit{while} \ \exists v \in V, d(v,S) > 2r \ \textit{do} \\ S \leftarrow S \cup \{v\} \\ \textit{end while} \\ \textit{if} \ \#S \leqslant k \ \textit{then} \\ return \ S \\ \textit{end if} \\ \textit{end for} \\ \end{array}$ $We \ can \ also \ guess \ r^* \ on \ the \ fly.$

 $S \leftarrow \varnothing$ $while \ \#S \leqslant k \ do$ $v \leftarrow \operatorname{argmax}_{v \in V} d(v, S)$ $S \leftarrow S \cup \{v\}$ $end \ while$

We now prove the correctness of this last algorithm. Let S be the output of this algorithm and let r = rad(S).

Let $p \in V$ such that d(p, S) = r and let $S' = S \cup \{p\}$. We first claim that for any $v, w \in S$, if $v \neq w$ then $d(v, w) \ge r$. Indeed, at each iteration of the algorithm, we pick the point that is the furthest to the previously selected centers. Since p was not selected, and that $d(p, v) \ge r$ for any $v \in S$, it follows that all centers have distance at least r to the previous ones.

Now, S' is covered by the k balls of radius r^* whose centers are the points in S^* . So there are two points in S' that are covered by the same center. In particular, their distance is at most $2r^*$. It follows that $r \leq 2r^*$.

See [?, §11.2] for more details.