Advanced algorithms

Exercise sheet \#6 (Solutions) - Approximation algorithms

November 9, 2022

Exercice 1 (TSP with triangle inequality). Let G be a complete graph with n vertices, labelled from 1 to n. To each of the $\frac{1}{2} n(n-1)$ edges (u, v) is associated a distance $d(u, v)$. The traveling salesman looks for a minimum-length tour that starts and ends on 1 and visits every vertex exactly once. The decision version of this problem is NP-complete.

We assume furthermore that the distance d satisfies the triangle inequality: $d(u, v) \leqslant d(u, w)+$ $d(w, v)$ for any vertex u, v and w.

Let T be a minimum spanning tree, rooted at 1 , and let H be the tour obtained by the pre-order depth first traversal of T.
(a) What is the complexity of computing H ?

Solution - This is $O\left(n^{2} \log n\right)$ with Kruskal or Prim algorithm. Can be lowered to $O\left(n^{2}\right)$ with more advances algorithms.
(b) Let H^{*} be an optimal tour. Show that the length $c(T)$ of T (that is the sum of the distances of the edges in $T)$ is at most the length $c\left(H^{*}\right)$ of H^{*}.

Solution - If we remove one edge from H^{*}, we obtain a spanning tree T^{*}. Therefore $c\left(H^{*}\right)>c\left(T^{*}\right) \geqslant c(T)$, by minimality of T.
(c) Using the triangle inequality, show that $c(H) \leqslant 2 c(T)$. Deduce an approximation algorithm, with approximation factor 2 , for computing an optimal tour.

Solution - Consider the tour L (with repeated vertices) obtained from the depth-first traversal of T : each edge is taken once downward and one upward. It is clear that $c(L)=2 c(T)$. Moreover, H is obtained from L by deleting upward edges: A path of the form $b \rightarrow a \rightarrow b \rightarrow c$ is replaced by $b \rightarrow a \rightarrow c$ directly, so by the triangle inequality this change cannot increase the distance. Therefore, $c(H) \leqslant c(L)=2 c(T)$.
So, by the previous question, $c(H) \leqslant 2 c\left(H^{*}\right)$: We have a 2-approximation algorithm.

Exercice 2 (Multiterminal cut (Pâle 2013)). Let $G=(V, E)$ be a connected graph endowed with a weight function $c(e) \geq 0$ for each edge $e \in E$ and with a distinguished subset S of vertices, called terminals.

A multiterminal cut of G is a set of edges $F \subseteq E$ whose removal would disconnect all terminals from each other.

The weight of a multiterminal cut is the sum of the weight of its elements. Given S, we aim at computing a minimum-weight multiterminal cut, or rather an approximation.
(a) Given a multiterminal cut F and $v \in S$, let $G_{v}[F]$ be the connected component of $G \backslash F$ containing v. Moreover, let F_{v} be the subset of F of all edges with exactly one end in $G_{v}[F]$. Show that any path in G from v to any other $w \in S$ has an edge in F_{v}.

Solution - Let $w \in S, w \neq v$. Let P be a path joining v and w. By definition of a multiterminal cut, P passes through an edge in F. Therefore, it must go out of the connected component $G_{v}[F]$: It contains an edge with only one end in $G_{v}[F]$, i.e. that belongs to F_{v}.
(b) For $v \in S$, let E_{v} be a minimum-weight set of edges such that any path in G from v to any other $w \in S$ has an edge in E_{v}. Show that E_{v} can be computed in polynomial time. What is the complexity of your algorithm ?

Solution -

The idea is to build a flow network from G and consider all vertices $S \backslash\{v\}$ as a single terminal t. The problem would now reduce to finding a $v-t$ cut of minimum capacity in this flow network.
To build the flow network from G, we transform each edge e in two edges e_{1}, e_{2} (to make them directed) both with capacity $c(e)$. Moreover, we add an edge (w, t) for each $w \in S \backslash\{v\}$.
By the max-flow min-cut theorem, a $v-t$ cut can be computed with a flow algorithm such as Edmond-Karp algorithm, in complexity $O\left(n^{2} m\right)$.
(c) Deduce a 2-approximation algorithm for the problem of computing a minimum-weight multiterminal cut.

Solution - Let $U=\bigcup_{v \in S} E_{v}$. It is a multiterminal cut.
Let F^{*} be a minimum-weight multiterminal cut. By minimality of each E_{v}, we have $c\left(F_{v}^{*}\right) \geqslant c\left(E_{v}\right)$. So that $c(U) \leqslant \sum_{v \in S} c\left(E_{v}\right) \leqslant \sum_{v \in S} c\left(F_{v}^{*}\right)$. But each edge of F^{*} can only belong to at most two different F_{v}^{*}. So $\sum_{v} c\left(F_{v}^{*}\right) \leqslant 2 c\left(F^{*}\right)$.

Exercice 3 (Vertex cover with linear programming). Let $G=(V, E)$ be a graph with a weight function $c(v) \geq 0$ on the vertices. We aim at computing an approximate minimum-weight vertex cover of G. Recall that a vertex cover is a set $S \subset V$ so that each edge has at least one end in S.

Consider the following linear program:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{v \in V} c(v) x_{v} \\
\text { such that } & x_{u}+x_{v} \geqslant 1, \quad \forall\{u, v\} \in E \\
& 1 \geq x_{v} \geq 0, \quad \forall v \in V,
\end{aligned}
$$

with the optimal value λ^{*} and an optimal solution $\left(x_{v}^{*}\right)_{v \in V}$.
(a) Let S^{*} be a minimum-weight vertex cover of G. Show that $c\left(S^{*}\right) \geqslant \lambda^{*}$.

Solution - If $x_{v}^{*} \in\{0,1\}$, then it is easy to build an optimal solution. Let $S=\left\{v \in V \mid x_{v}^{*}\right\}$. The constraint $x_{u}+x_{v} \geq 1$ for $(u, v) \in E$ ensures that each edge has an end in S, i.e. that S is indeed a vertex cover and λ^{*} is exactly the weight of a S.
Therefore, vertex covers of G correspond to integer solutions. When we allow x_{v} to take arbitrary real number values, the minimum cannot be larger! Hence, $\lambda^{*} \leq c\left(S^{*}\right)$.

Remark. Adding the extra constraint $x_{v} \in\{0,1\}$ (or more generally $x_{v} \in \mathbb{Z}$) is called Integer Programming and is significantly harder than Linear Programming.
(b) From the optimal solution $\left(x_{v}^{*}\right)_{v \in V}$, construct a vertex cover S of G such that $c(S) \leqslant 2 \lambda^{*}$.

Solution - Let $S=\left\{v \in V \left\lvert\, x_{i}^{*} \geq \frac{1}{2}\right.\right\}$.

- For any edge $(u, v) \in E$, we have $x_{u}^{*}+x_{v}^{*} \geq 1$, so either $x_{u}^{*} \geq \frac{1}{2}$ or $x_{v}^{*} \geq \frac{1}{2}$. Thus, at least one of them will be selected in S which is indeed a vertex cover.
- The set S has only vertices with $x_{v}^{*} \geq \frac{1}{2}$. Therefore, the following inequalities hold:

$$
\frac{1}{2} c(S)=\sum_{v \in S} c(v) \frac{1}{2} \leq \sum_{v \in S} c(v) x_{v}^{*} \leq \sum_{v \in V} c(v) x_{v}^{*}=\lambda^{*}
$$

For further readings, see [?, §11.6].
Exercice 4 (The center selection problem). Let V be a finite set endowed with a distance function $d: V \times V \rightarrow[0, \infty)$ which satisfies the usual properties of distance functions:

- Separation: $d(u, v)=0 \Leftrightarrow u=v$ for all $u, v \in S$,
- Symmetry: $d(u, v)=d(v, u)$ for all $u, v \in S$,
- Triangle inequality: $d(u, v) \leq d(u, w)+d(w, v)$ for all $u, v, w \in S$.

For any subset $S \subset V$, we define its covering radius

$$
\operatorname{rad}(S)=\max _{v \in V} \min _{s \in S} d(v, s)
$$

It is the maximal distance of an element of V to the closest element of S. Given an integer k, a subset S of size $\leq k$ of minimal covering radius is called a set of centers.
(a) Let $r \geqslant 0$ and assume that there exists a subset $S^{*} \subseteq V$ of k centers such that $\operatorname{rad}\left(S^{*}\right) \leqslant r$. Design a greedy algorithm to compute a $S \subseteq V$ with $\# S \leqslant k$ and $\operatorname{rad}(S) \leqslant 2 r$.

```
Solution -
\(S \leftarrow \varnothing\)
while \(\exists v \in V, d(v, S)>2 r\) do
            \(S \leftarrow S \cup\{v\}\)
end while
```

By design, $\operatorname{rad}(S) \leqslant 2 r$, it only remains to show that $\# S \leqslant k$. For each v that is added to S there is some $c_{v} \in S^{*}$ such that $d\left(c_{v}, v\right) \leqslant r$, by hypothesis. We want to prove that this c_{v} is unique for each v.
For any distinct $v, w \in S, d(v, w)>2 r$, by design, and, $2 r<d(v, w) \leqslant$ $d\left(v, c_{v}\right)+d\left(c_{v}, c_{w}\right)+d\left(c_{w}, w\right) \leq 2 r+d\left(c_{v}, c_{w}\right)$, by the triangle inequality. It follows that $c_{v} \neq c_{w}$.
Therefore, the map $v \mapsto c_{v}$ defines an injection from S to S^{*}, so $\# S \leqslant \# S^{*}$.
(b) Let r^{*} be the minimum value of $\operatorname{rad}\left(S^{*}\right)$, for $S^{*} \subseteq V$ and $\# S^{*}=k$. Design an algorithm to compute in polynomial time a $S \subseteq V$ with $\# S \leqslant k$ and $\operatorname{rad}(S) \leqslant 2 r^{*}$.

Solution - We can try to guess r^{*} and apply the previous algorithm. Note that r^{*} belongs to the finite set $\{d(v, w) \mid v, w \in V\}$. This gives the following algorithm (which we can refine using dichotomy).

$$
\begin{aligned}
& D \leftarrow\{d(v, w) \mid v, w \in V\} \\
& \text { for } r \in D, \text { by increasing order do } \\
& \quad S \leftarrow \varnothing \\
& \quad \text { while } \exists v \in V, d(v, S)>2 r \text { do } \\
& \quad S \leftarrow S \cup\{v\} \\
& \text { end while } \\
& \quad \text { if } \# S \leqslant k \text { then } \\
& \quad \text { return } S \\
& \text { end if } \\
& \text { end for }
\end{aligned}
$$

We can also guess r^{*} on the fly.
$S \leftarrow \varnothing$
while $\# S \leqslant k$ do
$v \leftarrow \operatorname{argmax}_{v \in V} d(v, S)$
$S \leftarrow S \cup\{v\}$
end while
We now prove the correctness of this last algorithm. Let S be the output of this algorithm and let $r=\operatorname{rad}(S)$.
Let $p \in V$ such that $d(p, S)=r$ and let $S^{\prime}=S \cup\{p\}$. We first claim that for any $v, w \in S$, if $v \neq w$ then $d(v, w) \geqslant r$. Indeed, at each iteration of the algorithm, we pick the point that is the furthest to the previously selected centers. Since p was not selected, and that $d(p, v) \geqslant r$ for any $v \in S$, it follows that all centers have distance at least r to the previous ones.
Now, S^{\prime} is covered by the k balls of radius r^{*} whose centers are the points in S^{*}. So there are two points in S^{\prime} that are covered by the same center. In particular, their distance is at most $2 r^{*}$. It follows that $r \leqslant 2 r^{*}$.

See [?, §11.2] for more details.

