
Advanced algorithms
Exercise sheet #7 (Solutions) — Online algorithms

November 16, 2022

Exercice 1 (Online scheduling). Consider m identical machines and a sequence of n tasks of
respective duration p1, . . . , pn. We must assign each task to a machine, in an online way (the
ith task is assigned without knowledge of what comes next, and an assignment is not revocable),
aiming at minimizing the termination time of the last task.

Design a greedy algorithm that is (2− 1
m)-competitive. Recall from the exercise sheet #1 that

the optimal scheduling takes a time at least equal to max
(
max1⩽i⩽n pi,

1
m

∑n
i=1 pi

)
.

Solution — When a task arrives, we assign it to the machine with the least load.

Let Topt be the time of the optimal scheduling. Note that Topt ⩾maxi pi and Topt ⩾
1
m

∑
i pi.

Consider the jth step. Before the task is assigned, the machine with the smallest load
has smaller load than average, that is at most 1

m

∑
i<k pi. So after the jth step, the

total load Tj of the machine to which the jth task is assigned satisfies

Tj ⩽
1

m

∑
i<j

pi + pj =
1

m

∑
i⩽j

pi +

(
1− 1

m

)
pj ⩽

(
2− 1

m

)
Topt.

To conclude, we note that the final duration of the scheduling is maxj Tj.

Exercice 2 (Memory management, (pâle 2011)). We consider a memory model with a cache,
which can hold only one page, and a slower external memory. Accessing the page in cache is free,
accessing a page in external memory costs 1. After accessing a page in external memory, we can
choose to load it in cache, this costs D. We are interested in a good online strategy to address a
stream of requests while minimizing the cost.

We study the following algorithm. Each page p has a counter c(p) that is initially set to 0.
Then the memory management performs the following loop.

1: while true do
2: p← next requested page
3: access p (cost ⩽ 1)
4: c(p)← c(p) + 1
5: if c(p) = D then
6: load p in cache (cost ⩽ D)
7: while c(p) > 0 do
8: q ← next requested page
9: if q ̸= p then

École polytechnique 1 PA informatique

10: c(p)← c(p)− 1
11: access q (cost 1)
12: else
13: access q (cost 0)
14: end if
15: end while
16: (end of phase for p)
17: end if
18: end while

We consider that there is no concurrency issue: When there is no request to deal with, the
memory management system holds. Notice that in the inner while loop, all the counters c(q) for
q ̸= p are locked.

(a) Consider the case D = 3 and the requests s1, s2, . . . below. Complete the table with the
values taken by the counters along the algorithm.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .
si 1 1 4 6 4 1 4 6 1 1 4 1 4 6 1 4 6 6 . . .
c(1) 1 2 2 2 2 3 2
c(4) 0 0 1 1 2 2 2
c(6) 0 0 0 1 1 1 1

Solution —

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .
si 1 1 4 6 4 1 4 6 1 1 4 1 4 6 1 4 6 6 . . .
c(1) 1 2 2 2 2 3 2 1 1 1 0 1 1 1 1 1 1 1
c(4) 0 0 1 1 2 2 2 2 2 2 2 2 3 2 1 1 0 0
c(6) 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

To analyze the performance of the algorithm, let’s split the stream s = (s1, s2, . . .) into subsets
of requests called phases, related to each reset of a counter: The phase Ipj countains the indexes i
of the requests si received between resets j and j + 1 of the counter c(p), and such that

• Either si increments c(p) (Access to p);

• Or, si is received after the request that made c(p) reach the limit D for the (j + 1)-th time.

In the previous example, we have

I10 = (1, 2, 6, 7, 8, 9, 10, 11), I11 = (12, . . .), . . .

I40 = (3, 5, 13, 14, 15, 16, 17), . . .

I60 = (4, 18, . . .), . . .

Notice that two phases corresponding to distinct pages can be interleaved and that the request
Ipj begins with a sequence of requests to page p and ends with a sequence of at least D + 1
consecutive requests.

(b) Show that the cost of handling the requests of a single phase is at most 3D.

École polytechnique 2 PA informatique

Solution — The cost of the requests before loading p is 1, and there are at
most D of them. The cost of loading p in cache is D. The cost of requests to
pages other than p is one, but there are at most D of them before a new phase
begins.

Let A be any other algorithm for handling the given requests.

(c) Given the sequence of requests s, show that we can split the cost paid by A for each
operation (accessing and loading pages) on the different phases such that each phase is
assigned a cost at least D.

Hint: Assign the cost paid by A to load a page that removes q from cache to the phase Iqj
currently open, and analyse the cost paid by A to handle all other request in each phase.

Solution —

In this question, we want to estimate a lower bound on the total cost paid by
A. Since the phases Iqj form a partition of the stream, it is enough to virtually
assign part of the cost paid by A to the different phases.

Consider the following procedure:

Upon receiving a request to page p:

• if A has p in cache, there is no cost to assign;

• if A does not have p in cache, then the cost 1 is assigned to the phase Iqj
which contains the request;

• if moreover A loads p in cache (and unloads q), we assign the cost D (paid
by A to load p) is assigned to Iqj .

Consider a phase Ipj .

• If the page p is never in the cache of A during the first D requests of Ipj
(which are requests to p), then A pays a cost 1 for each of theese D requests,
and we can assign a cost at least D to Ipj .

• Otherwise, p is loaded in cache during those first D requests. Now, there
are two cases to consider:

– If p is unloaded by A somewhere between the first request in Ipj and
the last, then Ipj is assigned a cost at least D.

– On the other hand, if p is never unloaded during Ipj , it is in particular
always in cache during the last consecutive requests of Ipj (which cor-
respond to requests that decrease c(p) in the online algorithm), and A
pays 1 to access each of the pages which are not in cache. There are at
least D of them and therefore Ipj is again assigned a cost at least D.

In any case, the cost assigned to each phase is at least D.

(d) Deduce the competitive ratio of the algorithm.

Solution — Any other algorithm A (including an optimal one) assigns a cost
at least D to each phase, and our algorithm pays 3D by phase. Therefore, the
competitive ratio is 3.

École polytechnique 3 PA informatique

Exercice 3 (Online boxing with advice). A sequence σ of n objects, of size x1, . . . , xn ∈ (0, 1] is
given as input. They must be put into boxes of capacity 1, that is to say, the sum of the sizes of
the objects inside a box cannot exceed 1. We aim at minimizing the number of nonempty boxes.
We consider here the online variant of the problem: when the ith object comes in, it must be
given a location immediately and permanently.

The objects are classified into four categories:

• the tiny objects, with a size in (0, 1
3];

• the small objects, with a size in (13 ,
1
2];

• the critical objects, with a size in (12 ,
2
3];

• and the enormous objects, with a size in (23 , 1].

The number m of critical objects is known from the beginning (this is called the advice), and
we assume that there are a lot of tiny objects. Consider the following algorithm. The m first
boxes are call critical boxes and 2

3 of their capacity is reserved for critical objects. Then the
objects are handled depending on their category:

Enormous: the object is put into a new box;
Critical: the object is put into one of the critical boxes;
Small: if possible, the object is put into a box that already contains a small object,

otherwise it is put into a new box;
Tiny: if possible, the object is put into the first critical box that can contain the

object in its nonreserved third, otherwise it is put into a box that already
contains a tiny object, or, as a last possibility, into a new box.

(a) The level of a box is the sum of the sizes of the objects that are in it. At the end of the
algorithm, show that the level of boxes that contains enormous or small objects is at least 2

3
(except maybe for one box).

Solution —

• The level of all boxes with enormous item is at least 2
3 by definition.

• The level of all boxes with small items is at least 2
3 (if we put 2 small items

in it), except possibly the last box opened for small items which may only
contain one.

(b) Assuming that there is a box containing only tiny objects, show that the level of critical
boxes (except maybe one) and boxes containing only tiny objects (expect maybe one) is at
least 2

3 .

Solution —

• Each critical box contains one critical object of size at least 1
2 , and then is

filled by tiny objects. For the sake of contradiction, assume that the space
filled by tiny objects is less than 1

6 in at least 2 critical boxes Bi and Bj,
with i < j. Upon packing the tiny objects in Bj, there is still enough room
in Bi for them, so they should have been put in Bi according to the strategy.
Therefore, it means that there is no tiny object in Bj. However, there is a
box T with only tiny objects. When a tiny object is put in T , it means that
there is no critical box with enough room for it. But Bj contains no tiny
object. Contradiction. Therefore, the level of all critical boxes is at least
1
2 + 1

6 = 2
3 , except maybe for one.

École polytechnique 4 PA informatique

• When no critical box can contain a tiny object anymore, they are put in the
box containing only tiny objects until it is full. Therefore, except maybe for
the last box opened for tiny objects only, they all have a level at least 2

3 .

(c) Assume now that no box contains only tiny objects. Assign a weight to objects (depending
on the category) so that: in the online algorithm, the boxes (except maybe one) carry a
total weight ⩾2; in any strategy, the boxes contain a weight ⩽ 3.

Solution — Give weight 2 to enormous and critical objects, weight 1 to small
objects and 0 to tiny objects. In the online algorithm, the total weight of items
in any given bin, except possibly one bin which contain a single small item, is at
least 2. Moreover, in any strategy, the maximum weight that a box can have is
3, which occurs when a critical and a small object are placed in the same box.

(d) Deduce the competitive ratio of the online algorithm.

Solution — Assume our algorithm uses A(σ) non empty boxes, and let OPT (σ)
be the optimal number of non empty boxes.
We consider two cases:

(i) If there is a box dedicated to packing tiny objects, then all boxes (except
maybe 3 of them) have a level of at least 2

3 .

• For each box Bi, let li be its level and let L(σ) be the sum of the sizes
of all items in σ. Then, by partitioning into all the non empty boxes,

L(σ) =

A(σ)∑
i=1

li ≥
2

3
(A(σ)− 3)

i.e.

A(σ) ≤ 3

2
L(σ) + 3.

• On the other hand, in any strategy, all boxes have level at most 1 by
definition. So, L(σ) ≤ OPT (σ).

Therefore,

A(σ) ≤ 3

2
OPT (σ) + 3.

(ii) Otherwise we use the technique of the previous question and introduce the
weights.

• For each box Bi, let wi be its weight and let W be the total weight of
items in σ. Then

W (σ) =

A(σ)∑
i=1

wi ≥ 2A(σ).

• On the other hand, in any strategy, all boxes have a weight at most 3:

W (σ) =

OPT (σ)∑
i=1

w∗
i ≤ 3OPT (σ).

École polytechnique 5 PA informatique

Therefore,

A(σ) ≤ 3

2
OPT (σ).

In any case, we have A(σ) ≤ 3
2OPT (σ) + cst i.e. the online algorithm is

3
2−competitive.

École polytechnique 6 PA informatique

