
Advanced algorithms
Exercise sheet #2 – NP-completeness, branch-and-bound,

exponential-time algorithms

September 28, 2022

Exercice 1 (NP-completeness of Hitting set). The problem Hitting set is the following:

Input: A finite collection C of finite sets of integers; an integer k ⩾ 0.
Question: Is there a set S ⊂ N such that #S ⩽ k and A ∩ S ̸= ∅ for any A ∈ C?

Using the NP-complete problem Vertex cover, show that Hitting set is NP-complete.

Exercice 2 (NP-completeness of Feedback arc set). Let G = (V,E) be a directed graph. A
feedback arc set is a subset of E such that the graph (V,E \ C) is acyclic.

The problem Feedback arc set is the following:

Input: A directed graph G; an integer k ⩾ 0.
Question: Does G admit a feedback arc set of cardinality ⩽ k?

(a) Show that Feedback arc set is in NP.

Given an undirected graph G = (V,E), we define a directed graph G′ = (V ′, E′) as follows:
V ′ = V × {0, 1} and E′ =

{(
x0, y1

)
s.t. {x, y} ∈ E

}
∪
{(

x1, x0
)

s.t. x ∈ V
}
, where, for short,

we denote xi the pair (x, i) ∈ V ′.

(b) Show that G′ has a minimum-cardinality feedback arc set with edges only of type (x1, x0).

(c) Show that Feedback arc set is NP-complete. Hint: use Vertex cover.

Exercice 3 (Dynamic programming for TSP). Let G = (V,E) be a complete graph with a
weight function w : E → R ∪ {+∞}. The travelling salesman problem (TSP) is the problem of
computing a minimum-weight cycle in G that goes through all vertices exactly once. The naive
solution to solve this problem is the enumeration of all n! cycles (where n = #V ).

The goal of this exercise is to do better and to provide an exponential time algorithm.

(a) Let S ⊂ V containing at least two vertices, and let s ∈ S. For any t ∈ S, we denote by
W (S, t) the total weight of a shortest path from s to t, visiting exactly once the elements
of S and no other vertex.

Give a recursive expression of W (S, t).

(b) Deduce an algorithm to solve TSP in time O(n22n) using the principle of dynamic pro-
gramming.

École polytechnique 1 PA informatique



Exercice 4 (WalkSAT). We study a randomized local search procedure to solve 3-SAT problem.
It takes as input a 3-SAT instance P and an assigment a of the variables that does not satisfy P :

procedure Update(P , a)
Choose a clause c of P that is not satisfied by a
Choose randomly one the variables appearing in c
Flip the assignment of v in a

end procedure

For two affectations a and b of the variables of P , let d(a, b) denote the Hamming distance of a
and b: this is the number of variables that are not assigned to the same value in a and b.

We consider now a 3-SAT instance P that has a solution s.

(a) Let a be an assignment of the variables of P that does not satisfy P , and let a′ =
Update(P, a). Show that d(a′, s) = d(a, s)± 1 and that

P [d(a′, s) = d(a, s)− 1]⩾
1

3
.

We now consider the following algorithm that applie the procedure Update until finding a
solution, or stops with the symbol ∅ if it has not found anything after N iterations.

Intput: a 3-SAT instance P , an assignment a and an integer N
Output: a solution of P or ∅

procedure WalkSAT(P , a, N)
for k from 1 to N do

if a satisfies P then
return a

end if
a← Update(P, a).

end for
return ∅

end procedure

Let h(a,N) be the probability that WalkSAT(P, a,N) returns a solution of P .

(b) Let a be an assignment of the variables and let δ = d(a, s). Show that

h(a, 3δ)⩾

(
3δ

δ

)(
1

3

)2δ (
2

3

)δ

.

For this, one can compare h(a, 3δ) with the probability to obtain δ tails and 2δ faces out
of 3δ coin flips with a biased coin.

(c) We admit the lower bound
(
3δ
δ

)
⩾ (3δ+1)−1

(
27
4

)δ. If a is random and uniformly distributed
among all possible assignments of the n variables of P , show that

P [WalkSAT(P, a, 3n) returns a solution of P ]⩾ (3n+ 1)−1

(
3

4

)n

.

(d) Deduce a probabilistic algorithm that returns with probability ⩾ 1
2 a solution of satisfiable

3-SAT instance with n variables with poly(n)
(
4
3

)n operations.

École polytechnique 2 PA informatique


