# Advanced algorithms 

Exercise sheet \#2 - NP-completeness, branch-and-bound, exponential-time algorithms

September 28, 2022

Exercice 1 (NP-completeness of Hitting Set). The problem Hitting set is the following:
Input: A finite collection $\mathcal{C}$ of finite sets of integers; an integer $k \geqslant 0$.
Question: Is there a set $S \subset \mathbb{N}$ such that $\# S \leqslant k$ and $A \cap S \neq \varnothing$ for any $A \in \mathcal{C}$ ?
Using the NP-complete problem Vertex cover, show that Hitting set is NP-complete.
Exercice 2 (NP-completeness of Feedback arc SET). Let $G=(V, E)$ be a directed graph. A feedback arc set is a subset of $E$ such that the graph $(V, E \backslash C)$ is acyclic.

The problem Feedback arc set is the following:
Input: A directed graph $G$; an integer $k \geqslant 0$.
Question: Does $G$ admit a feedback arc set of cardinality $\leqslant k$ ?
(a) Show that Feedback arc set is in NP.

Given an undirected graph $G=(V, E)$, we define a directed graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows: $V^{\prime}=V \times\{0,1\}$ and $E^{\prime}=\left\{\left(x^{0}, y^{1}\right)\right.$ s.t. $\left.\{x, y\} \in E\right\} \cup\left\{\left(x^{1}, x^{0}\right)\right.$ s.t. $\left.x \in V\right\}$, where, for short, we denote $x^{i}$ the pair $(x, i) \in V^{\prime}$.
(b) Show that $G^{\prime}$ has a minimum-cardinality feedback arc set with edges only of type $\left(x^{1}, x^{0}\right)$.
(c) Show that Feedback arc set is NP-complete. Hint: use Vertex cover.

Exercice 3 (Dynamic programming for TSP). Let $G=(V, E)$ be a complete graph with a weight function $w: E \rightarrow \mathbb{R} \cup\{+\infty\}$. The travelling salesman problem (TSP) is the problem of computing a minimum-weight cycle in $G$ that goes through all vertices exactly once. The naive solution to solve this problem is the enumeration of all $n$ ! cycles (where $n=\# V$ ).

The goal of this exercise is to do better and to provide an exponential time algorithm.
(a) Let $S \subset V$ containing at least two vertices, and let $s \in S$. For any $t \in S$, we denote by $W(S, t)$ the total weight of a shortest path from $s$ to $t$, visiting exactly once the elements of $S$ and no other vertex.
Give a recursive expression of $W(S, t)$.
(b) Deduce an algorithm to solve TSP in time $O\left(n^{2} 2^{n}\right)$ using the principle of dynamic programming.

Exercice 4 (WalkSAT). We study a randomized local search procedure to solve 3-SAT problem. It takes as input a 3-SAT instance $P$ and an assigment $a$ of the variables that does not satisfy $P$ :

```
procedure Update( }P,a
    Choose a clause c of P that is not satisfied by a
    Choose randomly one the variables appearing in c
    Flip the assignment of v}\mathrm{ in }
end procedure
```

For two affectations $a$ and $b$ of the variables of $P$, let $d(a, b)$ denote the Hamming distance of $a$ and $b$ : this is the number of variables that are not assigned to the same value in $a$ and $b$.

We consider now a 3-SAT instance $P$ that has a solution $s$.
(a) Let $a$ be an assignment of the variables of $P$ that does not satisfy $P$, and let $a^{\prime}=$ $\operatorname{Update}(P, a)$. Show that $d\left(a^{\prime}, s\right)=d(a, s) \pm 1$ and that

$$
\mathbb{P}\left[d\left(a^{\prime}, s\right)=d(a, s)-1\right] \geqslant \frac{1}{3}
$$

We now consider the following algorithm that applie the procedure Update until finding a solution, or stops with the symbol $\varnothing$ if it has not found anything after $N$ iterations.

```
Intput: a 3-SAT instance \(P\), an assignment \(a\) and an integer \(N\)
Output: a solution of \(P\) or \(\varnothing\)
    procedure WalkSAT \((P, a, N)\)
        for \(k\) from 1 to \(N\) do
            if \(a\) satisfies \(P\) then
                    return \(a\)
            end if
            \(a \leftarrow \operatorname{Update}(P, a)\).
        end for
        return \(\varnothing\)
    end procedure
```

Let $h(a, N)$ be the probability that $\operatorname{WalkSAT}(P, a, N)$ returns a solution of $P$.
(b) Let $a$ be an assignment of the variables and let $\delta=d(a, s)$. Show that

$$
h(a, 3 \delta) \geqslant\binom{ 3 \delta}{\delta}\left(\frac{1}{3}\right)^{2 \delta}\left(\frac{2}{3}\right)^{\delta}
$$

For this, one can compare $h(a, 3 \delta)$ with the probability to obtain $\delta$ tails and $2 \delta$ faces out of $3 \delta$ coin flips with a biased coin.
(c) We admit the lower bound $\binom{3 \delta}{\delta} \geqslant(3 \delta+1)^{-1}\left(\frac{27}{4}\right)^{\delta}$. If $a$ is random and uniformly distributed among all possible assignments of the $n$ variables of $P$, show that

$$
\mathbb{P}[\operatorname{WALKSAT}(P, a, 3 n) \text { returns a solution of } P] \geqslant(3 n+1)^{-1}\left(\frac{3}{4}\right)^{n}
$$

(d) Deduce a probabilistic algorithm that returns with probability $\geqslant \frac{1}{2}$ a solution of satisfiable 3-SAT instance with $n$ variables with $\operatorname{poly}(n)\left(\frac{4}{3}\right)^{n}$ operations.

