Advanced algorithms

Exercise sheet \#6 - Approximation algorithms

November 9, 2022

Exercice 1 (TSP with triangle inequality). Let G be a complete graph with n vertices, labelled from 1 to n. To each of the $\frac{1}{2} n(n-1)$ edges (u, v) is associated a distance $d(u, v)$. The traveling salesman looks for a minimum-length tour that starts and ends on 1 and visits every vertex exactly once. The decision version of this problem is NP-complete.

We assume furthermore that the distance d satisfies the triangle inequality: $d(u, v) \leqslant d(u, w)+$ $d(w, v)$ for any vertex u, v and w.

Let T be a minimum spanning tree, rooted at 1 , and let H be the tour obtained by the pre-order depth first traversal of T.
(a) What is the complexity of computing H ?
(b) Let H^{*} be an optimal tour. Show that the length $c(T)$ of T (that is the sum of the distances of the edges in $T)$ is at most the length $c\left(H^{*}\right)$ of H^{*}.
(c) Using the triangle inequality, show that $c(H) \leqslant 2 c(T)$. Deduce an approximation algorithm, with approximation factor 2 , for computing an optimal tour.

Exercice 2 (Multiterminal cut (Pâle 2013)). Let $G=(V, E)$ be a connected graph endowed with a weight function $c(e) \geq 0$ for each edge $e \in E$ and with a distinguished subset S of vertices, called terminals.

A multiterminal cut of G is a set of edges $F \subseteq E$ whose removal would disconnect all terminals from each other.

The weight of a multiterminal cut is the sum of the weight of its elements. Given S, we aim at computing a minimum-weight multiterminal cut, or rather an approximation.
(a) Given a multiterminal cut F and $v \in S$, let $G_{v}[F]$ be the connected component of $G \backslash F$ containing v. Moreover, let F_{v} be the subset of F of all edges with exactly one end in $G_{v}[F]$. Show that any path in G from v to any other $w \in S$ has an edge in F_{v}.
(b) For $v \in S$, let E_{v} be a minimum-weight set of edges such that any path in G from v to any other $w \in S$ has an edge in E_{v}. Show that E_{v} can be computed in polynomial time. What is the complexity of your algorithm?
(c) Deduce a 2-approximation algorithm for the problem of computing a minimum-weight multiterminal cut.

Exercice 3 (Vertex cover with linear programming). Let $G=(V, E)$ be a graph with a weight function $c(v) \geq 0$ on the vertices. We aim at computing an approximate minimum-weight vertex cover of G. Recall that a vertex cover is a set $S \subset V$ so that each edge has at least one end in S.

Consider the following linear program:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{v \in V} c(v) x_{v} \\
\text { such that } & x_{u}+x_{v} \geqslant 1, \quad \forall\{u, v\} \in E \\
& 1 \geq x_{v} \geq 0, \quad \forall v \in V,
\end{aligned}
$$

with the optimal value λ^{*} and an optimal solution $\left(x_{v}^{*}\right)_{v \in V}$.
(a) Let S^{*} be a minimum-weight vertex cover of G. Show that $c\left(S^{*}\right) \geqslant \lambda^{*}$.
(b) From the optimal solution $\left(x_{v}^{*}\right)_{v \in V}$, construct a vertex cover S of G such that $c(S) \leqslant 2 \lambda^{*}$.

Exercice 4 (The center selection problem). Let V be a finite set endowed with a distance function $d: V \times V \rightarrow[0, \infty)$ which satisfies the usual properties of distance functions:

- Separation: $d(u, v)=0 \Leftrightarrow u=v$ for all $u, v \in S$,
- Symmetry: $d(u, v)=d(v, u)$ for all $u, v \in S$,
- Triangle inequality: $d(u, v) \leq d(u, w)+d(w, v)$ for all $u, v, w \in S$.

For any subset $S \subset V$, we define its covering radius

$$
\operatorname{rad}(S)=\max _{v \in V} \min _{s \in S} d(v, s)
$$

It is the maximal distance of an element of V to the closest element of S. Given an integer k, a subset S of size $\leq k$ of minimal covering radius is called a set of centers.
(a) Let $r \geqslant 0$ and assume that there exists a subset $S^{*} \subseteq V$ of k centers such that $\operatorname{rad}\left(S^{*}\right) \leqslant r$. Design a greedy algorithm to compute a $S \subseteq V$ with $\# S \leqslant k$ and $\operatorname{rad}(S) \leqslant 2 r$.
(b) Let r^{*} be the minimum value of $\operatorname{rad}\left(S^{*}\right)$, for $S^{*} \subseteq V$ and $\# S^{*}=k$. Design an algorithm to compute in polynomial time a $S \subseteq V$ with $\# S \leqslant k$ and $\operatorname{rad}(S) \leqslant 2 r^{*}$.

