
Advanced algorithms
INF550 – Exercise sheet #1 – Linear programming – Solutions

September 21, 2022

Exercice 1 (Shortest path). Given a weighted directed graph G = (V,E) with positive weights,
and two distinguished vertices s and t, we consider the problem of finding the shortest path
from s to t (where the length of a path is the sum of the weights of the edges of the path).

To each vertex v is associated a variable d(v). Consider the following linear problem:

maximize d(t)− d(s)

subject to ∀(u, v) ∈ E, d(v)− d(u) ⩽ c(u, v).

(a) Show that for any assignment of the variables d(v) in the feasible set, the difference d(t)−d(s)
is a lower bound on the length of the shortest path from s to t.

Solution — Let γ = (xi)1⩽i⩽n with x1 = s, xn = t and (xi, xi+1) ∈ E be the
shortest path from s to t. If the variable d(v) are assigned a feasible solution,
then

d(t)− d(s) =

n−1∑
i=1

d(xi+1)− d(xi) ⩽
n−1∑
i=1

c(xi, xi+1),

which is exactly the length of the path γ.

(b) Show that assigning to d(v) the length of the shortest path from s to v is feasible.

Solution — Let (u, v) be an edge of E. The shortest path from s to u can
be extended as a path from s to v by adding the edge (u, v), giving a path of
length d(u) + c(u, v). Thus d(v) ⩽ d(u) + c(u, v).

(c) Conclude that the optimal value of the linear program is exactly the length of the shortest
path from s to t.

Solution — Follows directly from the previous questions.

(d) Write the dual linear program and interpret it.

Solution — Let’s rewrite the primal problem (P) in matrix form:

{
Maximize c⊤x
Subject to Ax ≤ b

École polytechnique 1 PA informatique

With cT being indexed by V and A having a row for each edge (a, b) and a column
for each vertex v:

A((a, b), v) =

 −1 if a = v
1 if b = v
0 otherwise

= 1b=v − 1a=v

and

cT (v) =

 −1 if v = s
1 if v = t
0 otherwise

= 1v=t − 1v=s

Furthermore, the variables of (P) have unconstrained sign. Therefore the dual
problem (D) will be of the form

Minimize y⊤b

Subject to y⊤A = c
y ≥ 0

• Variables - In (P), the inequality constraints are in one-to-one correspon-
dance with the edges. Therefore, (D) will have one variable yu,v ≥ 0 for
each edge (u, v).

• Constraints - For each vertex v ∈ V ,

yTA(v) =
∑

(a,b)∈E

ya,bA((a, b), v) =
∑

(a,b)∈E

ya,b1b=v −
∑

(a,b)∈E

ya,b1a=v

=
∑

a:(a,v)∈E

ya,b −
∑

b:(v,b)∈E

yv,b

The dual program is

Minimize
∑

(u,v)∈E c(u, v)yu,v

Subject to ∀(u, v) ∈ E, yu,v ⩾ 0

∀v ∈ V,
∑

a:(a,v)∈E ya,b −
∑

b:(v,b)∈E yv,b =

−1 if v = s

1 if v = t

0 otherwise

It can be interpreted as a flow problem: The last constraint stands for the
conservation of the flow, while the others mean that the total flow going out from

École polytechnique 2 PA informatique

s is 1 and the total flow arriving at t is also 1. This is not a max-flow problem:
Here the total flow is fixed, and the edges have infinite capacity. Here we want
to minimize the cost of sending a certain amount of flow. This problem is also
known as Min-Cost flow. This exercise shows that this problem is dual to the
shortest path problem, as the min-cut problem was the dual of the max-flow.

Exercice 2 (Max-norm linear regression). A physicist measures a quantity theoretically given
by a linear function y(x) = ax + b. The results are points (xi, yi). He wants to find the best
values for the coefficients a and b such that the vertical distance between the points (xi, yi) and
the line y = ax+ b is minimized.

(a) Write this optimization problem as a three-variable linear program.

Solution — We introduce 3 variables: a, b the coefficients of the linear function,
and m the maximal vertical distance between one point and the line. The question
is then to minimize m with the constraint that m is greater than all vertical
distances:

{
Minimize m
s. t ∀i, |yi − (axi + b)| ≤ m

i.e.

Minimize (0, 0, 1)

 a
b
m

s. t ∀i, axi + b−m ≤ yi

∀i, −axi − b−m ≤ −yi

(b) Write the dual problem.

Solution — The inequalities are in ≤ form but the primal problem is a mini-
mization problem. In order to write the dual problem, we begin by multiplying
each constraint by −1:

Minimize (0, 0, 1)

 a
b
m

s. t ∀i, −axi − b+m ≥ −yi

∀i, axi + b+m ≥ yi

Since the variables are unconstrained in the primal problem, the dual problem
will only have equality constraints.

École polytechnique 3 PA informatique

We introduce the variables pi for the first set of contraints and qi for the other.
Then the dual problem is

maximize
∑
i

yi(qi − pi)

such that
∑
i

(qi − pi)xi = 0 (constraint corresponding to a)∑
i

(qi − pi) = 0 (constraint corresponding to b)∑
i

(qi + pi) = 1 (constraint corresponding to m)

pi ⩾ 0, qi ⩾ 0.

We can simplify this problem by substituting qi−pi by a real variable αi and qi+pi
by |αi|.
Remark - While the primal problem has few variables, and a lot of constraints,
the dual problem has only 3 constraints. When the number of points is big, the
geometry of the dual might be easier to handle for LP programs.

Exercice 3 (Preemptive scheduling on parallel computers). A set of computational tasks {1, . . . , n}
is to be executed simultaneously on m computers. Each task has a duration pi and can be stopped
and restarted arbitrarily on another computer. However, a task may run on a single computer at
a time. A schedule is a plan describing which task will be executed on which computer at which
time.

(a) Show that the duration of a schedule is at least max
(
max1⩽i⩽n pi,

1
m

∑n
i=1 pi

)
.

Solution — All the work has to be done and there is only m computers, to
the total time cannot be less that 1

m

∑n
i=1 pi. Moreover, a task cannot be run

simultaneously on several computer, so the schedule cannot be shorter that the
duration of the longest task.

(b) Show that there exists a schedule that achieves the bound and that it can be computed
in O(n) operations.

Solution —

Let M1, . . . ,Mm be all the machines, and let denote by Mc the current machine
and by d the curent date. Initially, Mc = M1 and d = 0. For i = 1 to n, we
compute the date f = d+ pi. If f ≤ D, then the task i can be executed on the
current machine Mc between dates d and f . On the contrary, if f > D, task i
needs to be executed in two parts: One on the current machine between dates d
and D, and the other on Mc+1 between dates 0 and pi− (D−d). This affectation
is valid because the condition D ≥ pi ensures that the two parts executed on
the two different machines will not overlap. Moreover, the index of the current
machine after running task i is ⌈

∑i
k=1 pk/D⌉, therefore the index of the current

machine does not exceed m by definition of D.

It can be summed up in the following algorithm:
D ← max

(
max1⩽i⩽n pi,

1
m

∑n
i=1 pi

)
c← 1 ▷ current machine
d← 0 ▷ current date

École polytechnique 4 PA informatique

for i ∈ {1, . . . , n} do
if d+ pi ⩽ D then

Assign the task i to the machine c
d← d+ pi

else
Assign a time D − d of the task i to the machine c
Assign the rest of task i to the machine c+ 1
c← c+ 1
d← pi − (D − d)

end if
end for

(c) Each task has now a time interval [di, fi] in which it must be performed. Write a linear
system of constraints whose feasibility is equivalent to the existence of a schedule that runs
all the tasks in the appropriate time intervals.

Solution — We sort all the dates di and fi (deleting duplicates) in a increasing
sequence t0, . . . , tr. There is a variable xi,k for each task i and each inter-
val [tk, tk+1]. It represents the total time spent on task i in this time interval.
The constraints are the following. Firstly, the task i must only be run in the
interval [di, fi]:

xi,k = 0 if [tk, tk+1] ̸⊆ [di, fi].

Secondly, the tasks must be completed, so for all i

r−1∑
k=0

xi,k = pi.

Thirdly,

xi,k ⩽ tk+1 − tk.

And lasly, there are only m computers, so

n∑
i=1

xi,k ⩽ m(tk+1 − tk).

Question (b) (applied to each interval [tk, tk+1]) ensures that any solution of
this linear program can be realized by a sound schedule.

(d) Write an algorithm that computes a schedule obeying the time constraints and minimizing
the termination time.

Solution — In the previous linear program, we replace the data tr by a variable T
(representing the termination time) and we minimize T . If the minimal value
is tr−1, we remove the last time interval and repeat the process. Once the best
solution is found, we run the algorithm of Question (b) on each interval [tk, tk+1]
to compute the actual schedule.

École polytechnique 5 PA informatique

Exercice 4 (Min-cut and Ising model). Let G = (V,E) be a nondirected weighted graph with
positive weights Jij . Each vertex i has an associated scalar hi. We want to solve the following
optimization problem:

maximize
∑

(i,j)∈E

Jijσiσj +
∑
i∈V

hiσi

such that σi ∈ {−1, 1} .

Show that an optimal solution can be computed in polynomial time. (Hint: first assume
that hi = 0 and use a reduction to Min-cut; then refine the reduction to take hi into account.)

Solution — We recall the min-cut problem for an undirected graph:

Let G = (V,E) be an undirected graph with weight Ji,j for i, j ∈ E. A cut σ = (S1, S2)
of G is a partition of V in two sets S1, S2. The size of σ is the total weight of edges
that connect S1 to S2:

C(σ) =
∑

(i,j)∈E
i∈S1
j∈S2

Ji,j .

The problem Min-Cut is now the following:

Input: An undirected graph G = (V,E) and a weight function J on the edges.
Problem Find a cut σ of minimal size.

Remark - When all the weights are positive, this problem can be solved in polynomial
time. The algorithm works as follows:

One builds a weighted directed graph G′ = (V ′, E′) where V ′ = V and each edge
{i, j} ∈ E yields two reversed edges of same weight Ji,j: (i, j) and (j, i).

Then, given two vertices s and t, the max-flow/min-cut algorithm theorem asserts
that the maximum value of a flow from s to t is the minimum value of an s− t cut of
G′ and standard flow algorithms can find this corresponding cut easily. Now, in order
to solve the min-cut problem, one just fixes one arbitrarily vertex v and compute
the minimal v − x cut for all n− 1 other vertex x. The cut which is minimal is a
minimal size cut of the original undirected graph.

Here, it is necessary that the weights are positive.

Let’s proceed to the reduction:

• Step 1: ∀i, hi = 0
To a cut σ = (S1, S2) we associate a function

σ :

V → {±1}

i 7→ σi
.
=

{
1 if i ∈ S1

−1 if i ∈ S2

Then, using the equality 1i∈S11j∈S2 =
1− σiσj

2
, we have:

École polytechnique 6 PA informatique

C(σ) =
∑

{i,j}∈E

Ji,j1i∈S11j∈S2

=
∑

{i,j}∈E

Ji,j

(
1− σiσj

2

)
=

1

2

∑
(i,j)∈E

Ji,j −
1

2

∑
(i,j)∈E

Ji,jσiσj .

i.e. ∑
(i,j)∈E

Ji,jσiσj =
∑

(i,j)∈E

Ji,j − 2× C(σ)

Since the sum
∑

(i,j)∈E Ji,j is constant, maximizing the left hand side is equiv-
alent to minimizing C(σ), i.e. to solving min-cut.

• Step 2: hi ̸= 0

We modify the graph G′ in the previous reduction by adding two new vertices s
and t with the following new edges:

– For each vertex i ∈ V such that hi > 0, we add an edge (s, i) with weight
2hi,

– For each vertex i ∈ V such that hi < 0, we add an edge (s, i) with weight
−2hi (Recall that we need positive weights).

Notice that any cut σ = (S1, S2) of this new graph G′′ satisfies that s and t are
not in the same part. Without loss of generality, we can assume that s ∈ S1

and t ∈ S2. Now, let σ be a cut of G′′.

C(σ) =
∑

(i,j)∈E

Ji,j1i∈S11j∈S2 +
∑
i∈V

hi

2
1i∈S2 +

∑
i∈V

−hi

2
1i∈S1

Notice that 1i∈S1 =
1 + σi

2
and 1i∈S2 =

1− σi

2
. Hence,

C(σ) =
1

2

∑
(i,j)∈E

Ji,j −
1

2

∑
(i,j)∈E

Ji,jσiσj +
∑
i∈V

hi

2

(
1− σi

2
− 1 + σi

2

)
=

1

2

∑
(i,j)∈E

Ji,j −
1

2

∑
(i,j)∈E

Ji,jσiσj −
1

2

∑
i∈V

hiσi

i.e. ∑
(i,j)∈E

Ji,jσiσj +
∑
i∈V

hiσi =
∑

(i,j)∈E

Ji,j − 2× C(σ)

and maximizing the left-hand side is equivalent to solving min-cut.

École polytechnique 7 PA informatique

