Advanced algorithms

INF550 — Exercise sheet #1 — Linear programming — Solutions

September 21, 2022

Exercice 1 (Shortest path). Given a weighted directed graph G = (V, E) with positive weights,
and two distinguished vertices s and ¢, we consider the problem of finding the shortest path
from s to ¢t (where the length of a path is the sum of the weights of the edges of the path).

To each vertex v is associated a variable d(v). Consider the following linear problem:

maximize d(t) — d(s)
subject to Y(u,v) € E,d(v) — d(u) < c¢(u,v).

(a) Show that for any assignment of the variables d(v) in the feasible set, the difference d(t)—d(s)
is a lower bound on the length of the shortest path from s to t.

Solution — Let v = (x;)1<ig<n With 1 = 8, x, =t and (v, xi41) € E be the
shortest path from s to t. If the variable d(v) are assigned a feasible solution,
then

n—1 n—1

d(t) —d(s) = > d(wip1) —d(w;) <Y elwi, miga),
1

i=1 i

which is exactly the length of the path ~y.

(b) Show that assigning to d(v) the length of the shortest path from s to v is feasible.

Solution — Let (u,v) be an edge of E. The shortest path from s to u can
be extended as a path from s to v by adding the edge (u,v), giving a path of
length d(u) + c(u,v). Thus d(v) < d(u) + c(u,v).

(¢) Conclude that the optimal value of the linear program is exactly the length of the shortest
path from s to t.

Solution — Follows directly from the previous questions.

(d) Write the dual linear program and interpret it.

Solution — Let’s rewrite the primal problem (P) in matriz form:

Mazimize c¢'x
Subject to  Ax <b
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With ¢’ being indexed by V and A having a row for each edge (a,b) and a column
for each vertex v:

-1 ifa=wv
A((a,b),v) = 1 ifb=w =Tp—y — Loy
0 otherwise

and

-1 ifv=s
') = 1 odfo=t =Ty — 1
0 otherwise

Furthermore, the variables of (P) have unconstrained sign. Therefore the dual
problem (D) will be of the form

Minimize  y'b
Subject to  y'A=c
y=>0

e Variables - In (P), the inequality constraints are in one-to-one correspon-
dance with the edges. Therefore, (D) will have one variable y,,, > 0 for
each edge (u,v).

e Constraints - For each vertexv € V,

yTA(v): Z ya,bA((avb)av): Z Yablp=p — Z Ya,bLa=s

(a,b)eE (a,b)eE (a,b)eE
= Z Ya,b — Z Yu,b
a:(a,w)EE b:(v,b)eEE

The dual program is

Minimize Z(u,v)EE C(uyv)yu,v

Subject to Y(u,v) € E,yy, =0

-1 ifv=s
VvelV, Za:(a,v)GE Ya,b — Zb:(v,b)eE Yob =1 ifv=t
0 otherwise

It can be interpreted as a flow problem: The last constraint stands for the
conservation of the flow, while the others mean that the total flow going out from
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s is 1 and the total flow arriving at t is also 1. This is not a mazx-flow problem:
Here the total flow is fized, and the edges have infinite capacity. Here we want
to minimize the cost of sending a certain amount of flow. This problem is also
known as MIN-COST FLOW. This exercise shows that this problem is dual to the
SHORTEST PATH problem, as the MIN-CUT problem was the dual of the maz-flow.

Exercice 2 (Max-norm linear regression). A physicist measures a quantity theoretically given
by a linear function y(x) = ax 4+ b. The results are points (z;,y;). He wants to find the best
values for the coefficients a and b such that the vertical distance between the points (x;,y;) and

the line y = ax + b is minimized.

(a) Write this optimization problem as a three-variable linear program.

Solution — We introduce 3 variables: a, b the coefficients of the linear function,
and m the mazimal vertical distance between one point and the line. The question
s then to minimize m with the constraint that m is greater than all vertical

distances:

Minimize m
st Vi, lyi — (az; +b)| <m

i.e.

a
Minimize (0,0,1) [ b

m
s. t Vi, ax; +b—m < y;

Vi, —az; —b—m < —y;

(b) Write the dual problem.

Solution — The inequalities are in < form but the primal problem is a mini-
mization problem. In order to write the dual problem, we begin by multiplying

each constraint by —1:

a
Minimize (0,0,1) [ b

m
5.t Vi, —ar; —b+m > —y;

Vi, ax; +b+m > y;

Since the variables are unconstrained in the primal problem, the dual problem
will only have equality constraints.
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We introduce the variables p; for the first set of contraints and q; for the other.
Then the dual problem is

mazimize Y wlas )
i

such that Z(qi —pi)x; =0 (constraint corresponding to a)
i

Z(qi —pi)=0 (constraint corresponding to b)

Z(qi +pi)=1 (constraint corresponding to m)

We can simplify this problem by substituting q; —p; by a real variable o; and q;+p;
by |evil.

Remark - While the primal problem has few variables, and a lot of constraints,
the dual problem has only 3 constraints. When the number of points is big, the
geometry of the dual might be easier to handle for LP programs.

Exercice 3 (Preemptive scheduling on parallel computers). A set of computational tasks {1,...,n}
is to be executed simultaneously on m computers. Each task has a duration p; and can be stopped
and restarted arbitrarily on another computer. However, a task may run on a single computer at
a time. A schedule is a plan describing which task will be executed on which computer at which
time.

(a) Show that the duration of a schedule is at least max (maxlgignpi7 % Dy pi).

Solution — All the work has to be done and there is only m computers, to
the total time cannot be less that % iy pi- Moreover, a task cannot be run
simultaneously on several computer, so the schedule cannot be shorter that the

duration of the longest task.

(b) Show that there exists a schedule that achieves the bound and that it can be computed
in O(n) operations.

Solution —

Let My, ..., M,, be all the machines, and let denote by M. the current machine
and by d the curent date. Initially, M. = My and d = 0. Fori =1 to n, we
compute the date f =d+ p;. If f < D, then the task i can be executed on the
current machine M, between dates d and f. On the contrary, if f > D, task i
needs to be executed in two parts: One on the current machine between dates d
and D, and the other on M.1 between dates 0 and p; — (D —d). This affectation
18 valid because the condition D > p; ensures that the two parts executed on
the two different machines will not overlap. Moreover, the index of the current
machine after running task i is [ ;_, pr/ D], therefore the index of the current
machine does not exceed m by definition of D.

It can be summed up in the following algorithm:

1 n
D « max (maxi<i<n Pis = > iy i)
c+1 > current machine
d<«0 > current date
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forie{l,....,n} do
if d+p; < D then
Assign the task i to the machine c
d<+—d+p;
else
Assign a time D — d of the task i to the machine ¢
Assign the rest of task i to the machine ¢ + 1
c+—c+1
d<p; —(D—d)
end if
end for

(c) Each task has now a time interval [d;, f;] in which it must be performed. Write a linear
system of constraints whose feasibility is equivalent to the existence of a schedule that runs
all the tasks in the appropriate time intervals.

Solution — We sort all the dates d; and f; (deleting duplicates) in a increasing
sequence to,...,t.. There is a variable z; ) for each task i and each inter-
val [tg, tp1]. It represents the total time spent on task i in this time interval.
The constraints are the following. Firstly, the task i must only be run in the
interval [d;, fi]:

Tip =0 if [ty, trya] € [di, fil-

Secondly, the tasks must be completed, so for all i

r—1
Z Lik = Pi-
k=0

Thirdly,

Tk < lpp1 — the

And lasly, there are only m computers, so

n

szk <m(tger — ti).

i=1

Question (b) (applied to each interval [ty,tr11]) ensures that any solution of
this linear program can be realized by a sound schedule.

(d) Write an algorithm that computes a schedule obeying the time constraints and minimizing
the termination time.

Solution — In the previous linear program, we replace the data t, by a variable T’
(representing the termination time) and we minimize T. If the minimal value
18 t,._1, we remowve the last time interval and repeat the process. Once the best
solution is found, we run the algorithm of Question (b) on each interval [t ty41]
to compute the actual schedule.
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Exercice 4 (Min-cut and Ising model). Let G = (V, E) be a nondirected weighted graph with
positive weights J;;. Fach vertex ¢ has an associated scalar h;. We want to solve the following
optimization problem:

maximize E Ji]’O'iO'j—i- E hio;
(if)eE iev

such that o; € {-1,1}.

Show that an optimal solution can be computed in polynomial time. (Hint: first assume
that h; = 0 and use a reduction to Min-cut; then refine the reduction to take h; into account.)

Solution — We recall the MIN-CUT problem for an undirected graph:

Let G = (V, E) be an undirected graph with weight J; ; fori,j € E. A cut o = (S1, S2)
of G is a partition of V in two sets S1,S2. The size of o is the total weight of edges
that connect Sy to Sy:

C(O’): Z JZ’]
(i,j)€E
€51
JES2

The problem MIN-CUT is now the following:

Input: An undirected graph G = (V, E) and a weight function J on the edges.
Problem Find a cut o of minimal size.

Remark - When all the weights are positive, this problem can be solved in polynomial
time. The algorithm works as follows:

One builds a weighted directed graph G' = (V', E') where V! =V and each edge
{i,j} € E yields two reversed edges of same weight J; ;: (i,7) and (j,1).

Then, given two vertices s and t, the max-flow/min-cut algorithm theorem asserts
that the mazimum value of a flow from s to t is the minimum value of an s —t cut of
G’ and standard flow algorithms can find this corresponding cut easily. Now, in order
to solve the MIN-CUT problem, one just fixes one arbitrarily vertex v and compute
the minimal v — x cut for all m — 1 other vertex x. The cut which is minimal is a
minimal size cut of the original undirected graph.

Here, it is necessary that the weights are positive.
Let’s proceed to the reduction:

e Step 1: Vi,h; =0
To a cut o = (S1,S2) we associate a function

V = {£1}
o . 1 ifi1 €5,
2 = 0; =
1 ifi€ S,
1 — 005

Then, using the equality 1;cg, 1 es, = , we have:
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§ Jz 3]11631 JES,

{i,j}€E
- ¥ ()
{i,j}€E
1 1
25 Z Ji’j_§ Z Ji’jUiO'j.
(i,j)eE (i,j)EE

i.e.

Z Ji,jJin = Z Ji,j — 2 X C(O’)
(i,j)eE (i.j)ekE
Since the sum y_; »ep Jij is constant, mazimizing the left hand side is equiv-

alent to minimizing C (o), i.e. to solving MIN-CUT.
e Step 2: h; #0

We modify the graph G’ in the previous reduction by adding two new vertices s
and t with the following new edges:

— For each vertex i € V' such that h; > 0, we add an edge (s,1) with weight
2hi7

— For each vertex i € V' such that h; < 0, we add an edge (s,1) with weight
—2h; (Recall that we need positive weights).

Notice that any cut o = (S1,52) of this new graph G" satisfies that s and t are
not in the same part. Without loss of generality, we can assume that s € Sy
and t € Ss. Now, let o be a cut of G”.

Z Jz j]lZGSl JES, + Z ZGSQ + Z _Thi]lieSl

(i,j)eE eV eV
1 i 1—o0;
Notice that 1;es, = % and Lics, = g . Hence,
1 — 0 1+o0;
Co)=1 3 Jy-t Y e+ N ( e, )

(i,j)eE (w)EE eV

1 1

=5 Z Jij — Z Jijoio; — 3 Z hio;

(i,j)€EE (1 J)EE eV

i.e.

Z Ji,joioj + Z hio; = Z Jij—2xC(o)

(i.j)eE eV (i.j)eE

and maximizing the left-hand side is equivalent to solving MIN-CUT.
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