Advanced algorithms
 INF550 - Exercise sheet \#1 - Linear programming - Solutions

September 21, 2022

Exercice 1 (Shortest path). Given a weighted directed graph $G=(V, E)$ with positive weights, and two distinguished vertices s and t, we consider the problem of finding the shortest path from s to t (where the length of a path is the sum of the weights of the edges of the path).

To each vertex v is associated a variable $d(v)$. Consider the following linear problem:
maximize $d(t)-d(s)$
subject to $\forall(u, v) \in E, d(v)-d(u) \leqslant c(u, v)$.
(a) Show that for any assignment of the variables $d(v)$ in the feasible set, the difference $d(t)-d(s)$ is a lower bound on the length of the shortest path from s to t.

Solution - Let $\gamma=\left(x_{i}\right)_{1 \leqslant i \leqslant n}$ with $x_{1}=s, x_{n}=t$ and $\left(x_{i}, x_{i+1}\right) \in E$ be the shortest path from s to t. If the variable $d(v)$ are assigned a feasible solution, then

$$
d(t)-d(s)=\sum_{i=1}^{n-1} d\left(x_{i+1}\right)-d\left(x_{i}\right) \leqslant \sum_{i=1}^{n-1} c\left(x_{i}, x_{i+1}\right)
$$

which is exactly the length of the path γ.
(b) Show that assigning to $d(v)$ the length of the shortest path from s to v is feasible.

Solution - Let (u, v) be an edge of E. The shortest path from s to u can be extended as a path from s to v by adding the edge (u, v), giving a path of length $d(u)+c(u, v)$. Thus $d(v) \leqslant d(u)+c(u, v)$.
(c) Conclude that the optimal value of the linear program is exactly the length of the shortest path from s to t.

Solution - Follows directly from the previous questions.
(d) Write the dual linear program and interpret it.

Solution - Let's rewrite the primal problem (P) in matrix form:

$$
\begin{cases}\text { Maximize } & c^{\top} x \\ \text { Subject to } & A x \leq b\end{cases}
$$

With c^{T} being indexed by V and A having a row for each edge (a, b) and a column for each vertex v :

$$
A((a, b), v)=\left\{\begin{array}{rl}
-1 & \text { if } a=v \\
1 & \text { if } b=v \\
0 & \text { otherwise }
\end{array} \quad=\mathbb{1}_{b=v}-\mathbb{1}_{a=v}\right.
$$

and

$$
c^{T}(v)=\left\{\begin{array}{rl}
-1 & \text { if } v=s \\
1 & \text { if } v=t \\
0 & \text { otherwise }
\end{array} \quad=\mathbb{1}_{v=t}-\mathbb{1}_{v=s}\right.
$$

Furthermore, the variables of (P) have unconstrained sign. Therefore the dual problem (D) will be of the form

$$
\begin{cases}\text { Minimize } & y^{\top} b \\ \text { Subject to } & y^{\top} A=c \\ & y \geq 0\end{cases}
$$

- Variables - In (P), the inequality constraints are in one-to-one correspondance with the edges. Therefore, (D) will have one variable $y_{u, v} \geq 0$ for each edge (u, v).
- Constraints - For each vertex $v \in V$,

$$
\begin{aligned}
y^{T} A(v) & =\sum_{(a, b) \in E} y_{a, b} A((a, b), v)=\sum_{(a, b) \in E} y_{a, b} \mathbb{1}_{b=v}-\sum_{(a, b) \in E} y_{a, b} \mathbb{1}_{a=v} \\
& =\sum_{a:(a, v) \in E} y_{a, b}-\sum_{b:(v, b) \in E} y_{v, b}
\end{aligned}
$$

The dual program is

$$
\begin{cases}\text { Minimize } & \sum_{(u, v) \in E} c(u, v) y_{u, v} \\ \text { Subject to } & \forall(u, v) \in E, y_{u, v} \geqslant 0 \\ & \forall v \in V, \sum_{a:(a, v) \in E} y_{a, b}-\sum_{b:(v, b) \in E} y_{v, b}= \begin{cases}-1 & \text { if } v=s \\ 1 & \text { if } v=t \\ 0 & \text { otherwise }\end{cases} \end{cases}
$$

It can be interpreted as a flow problem: The last constraint stands for the conservation of the flow, while the others mean that the total flow going out from
s is 1 and the total flow arriving at t is also 1. This is not a max-flow problem: Here the total flow is fixed, and the edges have infinite capacity. Here we want to minimize the cost of sending a certain amount of flow. This problem is also known as Min-Cost flow. This exercise shows that this problem is dual to the SHORTEST PATH problem, as the MIN-CUT problem was the dual of the max-flow.

Exercice 2 (Max-norm linear regression). A physicist measures a quantity theoretically given by a linear function $y(x)=a x+b$. The results are points $\left(x_{i}, y_{i}\right)$. He wants to find the best values for the coefficients a and b such that the vertical distance between the points (x_{i}, y_{i}) and the line $y=a x+b$ is minimized.
(a) Write this optimization problem as a three-variable linear program.

Solution - We introduce 3 variables: a, b the coefficients of the linear function, and m the maximal vertical distance between one point and the line. The question is then to minimize m with the constraint that m is greater than all vertical distances:

$$
\begin{cases}\text { Minimize } & m \\ \text { s. } t & \forall i,\left|y_{i}-\left(a x_{i}+b\right)\right| \leq m\end{cases}
$$

i.e.

$$
\begin{cases}\text { Minimize } & (0,0,1)\left(\begin{array}{c}
a \\
b \\
m
\end{array}\right) \\
\text { s. } t & \forall i, a x_{i}+b-m \leq y_{i} \\
& \forall i,-a x_{i}-b-m \leq-y_{i}\end{cases}
$$

(b) Write the dual problem.

Solution - The inequalities are in \leq form but the primal problem is a minimization problem. In order to write the dual problem, we begin by multiplying each constraint by -1 :

$$
\begin{cases}\text { Minimize } & (0,0,1)\left(\begin{array}{c}
a \\
b \\
m
\end{array}\right) \\
\text { s. } t & \forall i,-a x_{i}-b+m \geq-y_{i} \\
& \forall i, a x_{i}+b+m \geq y_{i}\end{cases}
$$

Since the variables are unconstrained in the primal problem, the dual problem will only have equality constraints.

We introduce the variables p_{i} for the first set of contraints and q_{i} for the other. Then the dual problem is

$$
\begin{array}{rll}
\text { maximize } & \sum_{i} y_{i}\left(q_{i}-p_{i}\right) & \\
\text { such that } & \sum_{i}\left(q_{i}-p_{i}\right) x_{i}=0 & \text { (constraint corresponding to a) } \\
& \sum_{i}\left(q_{i}-p_{i}\right)=0 & \text { (constraint corresponding to } b \text {) } \\
& \sum_{i}\left(q_{i}+p_{i}\right)=1 & \text { (constraint corresponding to } m \text {) } \\
& p_{i} \geqslant 0, \quad q_{i} \geqslant 0 . &
\end{array}
$$

We can simplify this problem by substituting $q_{i}-p_{i}$ by a real variable α_{i} and $q_{i}+p_{i}$ by $\left|\alpha_{i}\right|$.
Remark - While the primal problem has few variables, and a lot of constraints, the dual problem has only 3 constraints. When the number of points is big, the geometry of the dual might be easier to handle for LP programs.

Exercice 3 (Preemptive scheduling on parallel computers). A set of computational tasks $\{1, \ldots, n\}$ is to be executed simultaneously on m computers. Each task has a duration p_{i} and can be stopped and restarted arbitrarily on another computer. However, a task may run on a single computer at a time. A schedule is a plan describing which task will be executed on which computer at which time.
(a) Show that the duration of a schedule is at least $\max \left(\max _{1 \leqslant i \leqslant n} p_{i}, \frac{1}{m} \sum_{i=1}^{n} p_{i}\right)$.

Solution - All the work has to be done and there is only m computers, to the total time cannot be less that $\frac{1}{m} \sum_{i=1}^{n} p_{i}$. Moreover, a task cannot be run simultaneously on several computer, so the schedule cannot be shorter that the duration of the longest task.
(b) Show that there exists a schedule that achieves the bound and that it can be computed in $O(n)$ operations.

Solution -

Let M_{1}, \ldots, M_{m} be all the machines, and let denote by M_{c} the current machine and by d the curent date. Initially, $M_{c}=M_{1}$ and $d=0$. For $i=1$ to n, we compute the date $f=d+p_{i}$. If $f \leq D$, then the task i can be executed on the current machine M_{c} between dates d and f. On the contrary, if $f>D$, task i needs to be executed in two parts: One on the current machine between dates d and D, and the other on M_{c+1} between dates 0 and $p_{i}-(D-d)$. This affectation is valid because the condition $D \geq p_{i}$ ensures that the two parts executed on the two different machines will not overlap. Moreover, the index of the current machine after running task i is $\left\lceil\sum_{k=1}^{i} p_{k} / D\right\rceil$, therefore the index of the current machine does not exceed m by definition of D.
It can be summed up in the following algorithm:

$$
\begin{array}{lr}
D \leftarrow \max \left(\max _{1 \leqslant i \leqslant n} p_{i}, \frac{1}{m} \sum_{i=1}^{n} p_{i}\right) & \\
c \leftarrow 1 & \triangleright \text { current machine } \\
d \leftarrow 0 & \triangleright \text { current date }
\end{array}
$$

```
for i\in{1,\ldots,n} do
    if d+ pi\leqslantD then
        Assign the task i to the machine c
        d}\leftarrowd+\mp@subsup{p}{i}{
    else
            Assign a time D-d of the task i to the machine c
            Assign the rest of task i to the machine c+1
            c}\leftarrowc+
            d}\leftarrow\mp@subsup{p}{i}{}-(D-d
    end if
end for
```

(c) Each task has now a time interval $\left[d_{i}, f_{i}\right]$ in which it must be performed. Write a linear system of constraints whose feasibility is equivalent to the existence of a schedule that runs all the tasks in the appropriate time intervals.

Solution - We sort all the dates d_{i} and f_{i} (deleting duplicates) in a increasing sequence t_{0}, \ldots, t_{r}. There is a variable $x_{i, k}$ for each task i and each interval $\left[t_{k}, t_{k+1}\right]$. It represents the total time spent on task i in this time interval. The constraints are the following. Firstly, the task i must only be run in the interval $\left[d_{i}, f_{i}\right]$:

$$
x_{i, k}=0 \text { if }\left[t_{k}, t_{k+1}\right] \nsubseteq\left[d_{i}, f_{i}\right] .
$$

Secondly, the tasks must be completed, so for all i

$$
\sum_{k=0}^{r-1} x_{i, k}=p_{i}
$$

Thirdly,

$$
x_{i, k} \leqslant t_{k+1}-t_{k}
$$

And lasly, there are only m computers, so

$$
\sum_{i=1}^{n} x_{i, k} \leqslant m\left(t_{k+1}-t_{k}\right)
$$

Question (b) (applied to each interval $\left[t_{k}, t_{k+1}\right]$) ensures that any solution of this linear program can be realized by a sound schedule.
(d) Write an algorithm that computes a schedule obeying the time constraints and minimizing the termination time.

Solution - In the previous linear program, we replace the data t_{r} by a variable T (representing the termination time) and we minimize T. If the minimal value is t_{r-1}, we remove the last time interval and repeat the process. Once the best solution is found, we run the algorithm of Question (b) on each interval $\left[t_{k}, t_{k+1}\right]$ to compute the actual schedule.

Exercice 4 (Min-cut and Ising model). Let $G=(V, E)$ be a nondirected weighted graph with positive weights $J_{i j}$. Each vertex i has an associated scalar h_{i}. We want to solve the following optimization problem:

$$
\begin{aligned}
& \text { maximize } \sum_{(i, j) \in E} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i \in V} h_{i} \sigma_{i} \\
& \text { such that } \sigma_{i} \in\{-1,1\} .
\end{aligned}
$$

Show that an optimal solution can be computed in polynomial time. (Hint: first assume that $h_{i}=0$ and use a reduction to Min-cut; then refine the reduction to take h_{i} into account.)

Solution - We recall the MIN-CUT problem for an undirected graph:
Let $G=(V, E)$ be an undirected graph with weight $J_{i, j}$ for $i, j \in E$. A cut $\sigma=\left(S_{1}, S_{2}\right)$ of G is a partition of V in two sets S_{1}, S_{2}. The size of σ is the total weight of edges that connect S_{1} to S_{2} :

$$
C(\sigma)=\sum_{\substack{(i, j) \in E \\ i \in S_{1} \\ j \in S_{2}}} J_{i, j} .
$$

The problem Min-CuT is now the following:
Input: An undirected graph $G=(V, E)$ and a weight function J on the edges. Problem Find a cut σ of minimal size.
Remark - When all the weights are positive, this problem can be solved in polynomial time. The algorithm works as follows:

One builds a weighted directed graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime}=V$ and each edge $\{i, j\} \in E$ yields two reversed edges of same weight $J_{i, j}:(i, j)$ and (j, i).
Then, given two vertices s and t, the max-flow/min-cut algorithm theorem asserts that the maximum value of a flow from s to t is the minimum value of an $s-t$ cut of G^{\prime} and standard flow algorithms can find this corresponding cut easily. Now, in order to solve the MIN-CUT problem, one just fixes one arbitrarily vertex v and compute the minimal $v-x$ cut for all $n-1$ other vertex x. The cut which is minimal is a minimal size cut of the original undirected graph.
Here, it is necessary that the weights are positive.
Let's proceed to the reduction:

- Step 1: $\forall i, h_{i}=0$

To a cut $\sigma=\left(S_{1}, S_{2}\right)$ we associate a function

$$
\sigma:\left\{\begin{array}{rll}
V & \rightarrow & \{ \pm 1\} \\
i & \mapsto & \sigma_{i} \doteq \begin{cases}1 & \text { if } i \in S_{1} \\
-1 & \text { if } i \in S_{2}\end{cases}
\end{array}\right.
$$

Then, using the equality $\mathbb{1}_{i \in S_{1}} \mathbb{1}_{j \in S_{2}}=\frac{1-\sigma_{i} \sigma_{j}}{2}$, we have:

$$
\begin{aligned}
C(\sigma) & =\sum_{\{i, j\} \in E} J_{i, j} \mathbb{1}_{i \in S_{1}} \mathbb{1}_{j \in S_{2}} \\
& =\sum_{\{i, j\} \in E} J_{i, j}\left(\frac{1-\sigma_{i} \sigma_{j}}{2}\right) \\
& =\frac{1}{2} \sum_{(i, j) \in E} J_{i, j}-\frac{1}{2} \sum_{(i, j) \in E} J_{i, j} \sigma_{i} \sigma_{j} .
\end{aligned}
$$

i.e.

$$
\sum_{(i, j) \in E} J_{i, j} \sigma_{i} \sigma_{j}=\sum_{(i, j) \in E} J_{i, j}-2 \times C(\sigma)
$$

Since the sum $\sum_{(i, j) \in E} J_{i, j}$ is constant, maximizing the left hand side is equivalent to minimizing $C(\sigma)$, i.e. to solving MIN-CUT.

- Step 2: $h_{i} \neq 0$

We modify the graph G^{\prime} in the previous reduction by adding two new vertices s and t with the following new edges:

- For each vertex $i \in V$ such that $h_{i}>0$, we add an edge (s, i) with weight $2 h_{i}$,
- For each vertex $i \in V$ such that $h_{i}<0$, we add an edge (s, i) with weight $-2 h_{i}$ (Recall that we need positive weights).
Notice that any cut $\sigma=\left(S_{1}, S_{2}\right)$ of this new graph $G^{\prime \prime}$ satisfies that s and t are not in the same part. Without loss of generality, we can assume that $s \in S_{1}$ and $t \in S_{2}$. Now, let σ be a cut of $G^{\prime \prime}$.

$$
C(\sigma)=\sum_{(i, j) \in E} J_{i, j} \mathbb{1}_{i \in S_{1}} \mathbb{1}_{j \in S_{2}}+\sum_{i \in V} \frac{h_{i}}{2} \mathbb{1}_{i \in S_{2}}+\sum_{i \in V} \frac{-h_{i}}{2} \mathbb{1}_{i \in S_{1}}
$$

Notice that $\mathbb{1}_{i \in S_{1}}=\frac{1+\sigma_{i}}{2}$ and $\mathbb{1}_{i \in S_{2}}=\frac{1-\sigma_{i}}{2}$. Hence,

$$
\begin{aligned}
C(\sigma) & =\frac{1}{2} \sum_{(i, j) \in E} J_{i, j}-\frac{1}{2} \sum_{(i, j) \in E} J_{i, j} \sigma_{i} \sigma_{j}+\sum_{i \in V} \frac{h_{i}}{2}\left(\frac{1-\sigma_{i}}{2}-\frac{1+\sigma_{i}}{2}\right) \\
& =\frac{1}{2} \sum_{(i, j) \in E} J_{i, j}-\frac{1}{2} \sum_{(i, j) \in E} J_{i, j} \sigma_{i} \sigma_{j}-\frac{1}{2} \sum_{i \in V} h_{i} \sigma_{i}
\end{aligned}
$$

i.e.

$$
\sum_{(i, j) \in E} J_{i, j} \sigma_{i} \sigma_{j}+\sum_{i \in V} h_{i} \sigma_{i}=\sum_{(i, j) \in E} J_{i, j}-2 \times C(\sigma)
$$

and maximizing the left-hand side is equivalent to solving MIN-CUT.

