
Advanced algorithms
Exercise sheet #2 (Solutions) – NP-completeness, branch-and-bound,

exponential-time algorithms

September 28, 2022

Exercice 1 (NP-completeness of Hitting set). The problem Hitting set is the following:

Input: A finite collection C of finite sets of integers; an integer k ⩾ 0.
Question: Is there a set S ⊂ N such that #S ⩽ k and A ∩ S ̸= ∅ for any A ∈ C?

Using the NP-complete problem Vertex cover, show that Hitting set is NP-complete.

Solution — It is clear that Hitting set is in NP because the set S is a certificate
that we can check in polynomial time.
Let G = (V,E) a graph and k⩾0 an integer, forming an instance of Vertex cover.
We may assume that V ⊂ N, i.e. the vertices are integers. Let C = E. It is easy to
check that G has a vertex cover with ⩽ k elements if and only if C has a hitting set
with ⩽ k elements. Since Vertex cover is NP-hard, then Hitting set is also
NP-hard. Since it is in NP, it is also NP-complete.

Exercice 2 (NP-completeness of Feedback arc set). Let G = (V,E) be a directed graph. A
feedback arc set is a subset of E such that the graph (V,E \ C) is acyclic.

The problem Feedback arc set is the following:

Input: A directed graph G; an integer k ⩾ 0.
Question: Does G admit a feedback arc set of cardinality ⩽ k?

(a) Show that Feedback arc set is in NP.

Solution — We can check that a given set of edges is a feedback arc set in
polynomial time using a depth first search to detect cycles.

Given an undirected graph G = (V,E), we define a directed graph G′ = (V ′, E′) as follows:
V ′ = V × {0, 1} and E′ =

{(
x0, y1

)
s.t. {x, y} ∈ E

}
∪
{(

x1, x0
)

s.t. x ∈ V
}
, where, for short,

we denote xi the pair (x, i) ∈ V ′.

(b) Show that G′ has a minimum-cardinality feedback arc set with edges only of type (x1, x0).

Solution — Let C be a feedback arc set of G′. Replace each edge (x0, y1) in C
by (y1, y0) to form a set C ′. Then |C ′| ≤ |C|. Assume that there exists a cycle
γ in G′′ = (V ′, E′\C ′). Since (V ′, E′\C) is acyclic, γ must pass through an
edge c ∈ C, which is of the form (x0, y1). The following edge in γ is then
(y1, y0), which belongs to C ′. Contradiction. Therefore, G′′ is acyclic, and C ′

is a feedback arc set of G′.

École polytechnique 1 PA informatique

(c) Show that Feedback arc set is NP-complete. Hint: use Vertex cover.

Solution —

Let (G = (V,E), k) be an instance of vertex-cover, i.e. G is an undirected
graph and k is some non negative integer.

Let G′ = (V ′, E′) be the directed graph obtained via the previous construction.

• Assume that G admits a vertex cover S of size ≤ k, and let FS := {(x1, x0) |
x ∈ S}. If γ is a cycle of (V ′, E′\FS) then it passes through an edge of the
form (x0, y1), and therefore through (x1, x0) and (y1, y0). It corresponds to
the edge {x, y} ∈ E. Since S is a vertex cover, we can assume without loss
of generality (wlog) that x ∈ S. But then, (x1, x0) ∈ FS which contradicts
the fact that γ passes through it. So FS is a feedback arc set of size k.

• Assume that G′ admits a feedback arc set C of size ≤ k. Using the
previous question, we can assume wlog that C contains only edges of
type (x1, x0). Let SC := {x | (x1, x0) ∈ C}. Let {a, b} ∈ E. Notice
that (a1, a0), (a0, b1), (b1, b0), (b0, a1) is a cycle of G′. Therefore, either
(a1, a0) ∈ C or (b1, b0) ∈ C, which is exactly a ∈ SC or b ∈ SC , i.e. SC is
a vertex cover.

We proved that G has a vertex cover of size ≤ k if and only if G′ has a feedback
arc set of size ≤ k. Since constructing G′ can be done in polynomial time,
Feedback arc set is NP-complete.

Exercice 3 (Dynamic programming for TSP). Let G = (V,E) be a complete graph with a
weight function w : E → R ∪ {+∞}. The travelling salesman problem (TSP) is the problem of
computing a minimum-weight cycle in G that goes through all vertices exactly once. The naive
solution to solve this problem is the enumeration of all n! cycles (where n = #V).

The goal of this exercise is to do better and to provide an exponential time algorithm.

(a) Let S ⊂ V containing at least two vertices, and let s ∈ S. For any t ∈ S, we denote by
W (S, t) the total weight of a shortest path from s to t, visiting exactly once the elements
of S and no other vertex.

Give a recursive expression of W (S, t).

Solution — Let γ be a path reaching the optimum W (S, t), and let a be the
penultimate vertex in γ. Therefore, the subpath from s to a reaches the optimum
W (S\{t}, a). Then,

W (S, t) = min
a∈S\{t}

(
W (S\{t}, a) + w(a, t)

)
.

(b) Deduce an algorithm to solve TSP in time O(n22n) using the principle of dynamic pro-
gramming.

Solution — Fix a vertex s ∈ V as starting and ending point. By definition, and
using the notations of the previous question, the minimum-weight solution of
TSP on G is given by

min
t∈V

(
W (V, t) + d(t, s)

)
.

École polytechnique 2 PA informatique

For any t, we can compute recursively W (V, t) by dynamic programming using
the previous question: It suffices to compute all the W (S, t) where S ⊂ V ,
starting from #S = 2 and increasing S. For each t, there are 2n subsets S ⊂ V
and therefore there are n× 2n such pairs (S, t).

Notice that for any vertex a ∈ V , W ({a, s}, a) = w(a, s), and using the previous
formula we can compute W (S, t) by induction on #S, wich costs O(n) operations.

Therefore, the solution of TSP can be computed in time O(n22n).

Exercice 4 (WalkSAT). We study a randomized local search procedure to solve 3-SAT problem.
It takes as input a 3-SAT instance P and an assigment a of the variables that does not satisfy P :

procedure Update(P , a)
Choose a clause c of P that is not satisfied by a
Choose randomly one the variables appearing in c
Flip the assignment of v in a

end procedure

For two affectations a and b of the variables of P , let d(a, b) denote the Hamming distance of a
and b: this is the number of variables that are not assigned to the same value in a and b.

We consider now a 3-SAT instance P that has a solution s.

(a) Let a be an assignment of the variables of P that does not satisfy P , and let a′ =
Update(P, a). Show that d(a′, s) = d(a, s)± 1 and that

P [d(a′, s) = d(a, s)− 1]⩾
1

3
.

Solution — Let c be a clause of P that is not satisfied by a, that is, all three
literals in c are given the value 0 by a. The clause c is satisfied by s, so at least
one of the literals is given the value 1 by s. Let v be the variable in this literal.

The value of v in a is the opposite of its value in s, otherwise c would be satisfied
by a. With probability 1

3 , the variable v is chosen to be flipped. In this case
d(a′, s) = d(a, s)− 1.

We now consider the following algorithm that applie the procedure Update until finding a
solution, or stops with the symbol ∅ if it has not found anything after N iterations.

Intput: a 3-SAT instance P , an assignment a and an integer N
Output: a solution of P or ∅

procedure WalkSAT(P , a, N)
for k from 1 to N do

if a satisfies P then
return a

end if
a← Update(P, a).

end for
return ∅

end procedure

Let h(a,N) be the probability that WalkSAT(P, a,N) returns a solution of P .

École polytechnique 3 PA informatique

(b) Let a be an assignment of the variables and let δ = d(a, s). Show that

h(a, 3δ)⩾

(
3δ

δ

)(
1

3

)2δ (
2

3

)δ

.

For this, one can compare h(a, 3δ) with the probability to obtain δ tails and 2δ faces out
of 3δ coin flips with a biased coin.

Solution —
Let ai denote the assignment of the variables after step i, with a0 = a, and
let Di := d(ai, s). Using the previous question, Di realizes a biased random
walk on N, with an absorbing state at 0, starting at δ and going to the left with
probability q ≥ 1

3 and to the right with probability 1− q. Then h(a, 3δ) is exactly
the probability that this random walk reaches 0 in 3δ steps.

We will use a classical proof technique in probability theory called coupling: To
compare two random distributions D1 and D2 it suffices to introduce a random
vector (X,Y) whose marginal distributions are D1 and D2 but such that X and
Y are related such that it is easy to compare them.
Let (δi) be a sequence of i.i.d random variables in {−1, 1}, such that P(δi =
−1) = q and P(δi = 1) = 1− q, and let’s consider the following random walk on
Z:

X0 = δ and Xi+1 = Xi + δi.

Then, the sequence (D′
i) such that D′

i = Xi while Xi ≥ 0 and 0 once Xi < 0 has
the same distribution as (Di) and clearly

h(a, 3δ) = P(D3δ = 0) = P(D′
3δ = 0) ≥ P(X3δ = 0)

and it suffices to find a lower bound on the probability that X reaches 0. To
handle that, we will compare this walk to a random walk whose behaviour is well
understood.

Now, let (εi) be a sequence of i.i.d random variables in {−1, 1}, such that

P(εi = −1) =
1

3
and P(εi = 1) = 2

3 , and let’s consider the following ”perfectly
biased” random walk on Z:

Y0 = δ and Yi+1 = Yi + εi.

Define a new random walk Z such that Z0 = Y0 = δ

• If Yi = −1 then Zi = −1,
• If Yi = 1 then Zi = −1 with probability q−1/3

2/3 = 3q−1
2 .

Then,

P(Zi = −1) = P(Zi = −1 | Yi = −1)P(Yi = −1) + P(Zi = −1 | Yi = 1)P(Yi = 1)

= 1× 1

3
+

3q − 1

2
× 2

3
= q

École polytechnique 4 PA informatique

Therefore, the sequence of Zi has exactly the same distribution of the walk (Xi),
but now it is easy to compare it to the walk (Yi): We clearly have

(Y3δ = 0) ⊂ (Z3δ = 0).

All in all,

h(a, 3δ) ≥ P(X3δ = 0) = P(Z3δ = 0) ≥ P(Y3δ = 0).

Conditioning on the number of steps on the right (i.e. such that εi = 1), we
find that

P(Y3δ = 0) =

δ∑
k=0

(
3δ

k

)(
1

3

)3δ−k (
2

3

)k

≥
(
3δ

δ

)(
1

3

)2δ (
2

3

)δ

.

(c) We admit the lower bound
(
3δ
δ

)
⩾ (3δ+1)−1

(
27
4

)δ. If a is random and uniformly distributed
among all possible assignments of the n variables of P , show that

P [WalkSAT(P, a, 3n) returns a solution of P]⩾ (3n+ 1)−1

(
3

4

)n

.

Solution — For any assignment a, h(a, 3n)⩾h(a, 3δ). Moreover, there is 2n pos-
sible assignments of the n variables, and, for a given δ, there is

(
n
δ

)
assignments a

with d(a, s) = δ. Thus,

P[WalkSAT(P, a, 3n) returns a solution of P]

= 2−n
∑
a

h(a, 3n)

= 2−n
n∑

δ=0

∑
a

d(a,s)=δ

h(a, 3n)

⩾ 2−n
n∑

δ=0

∑
a

d(a,s)=δ

h(a, 3δ)

⩾ 2−n
n∑

δ=0

∑
a

d(a,s)=δ

(
3δ

δ

)(
1

3

)2δ (
2

3

)δ

= 2−n
n∑

δ=0

(
n

δ

)(
3δ

δ

)(
1

3

)2δ (
2

3

)δ

⩾ 2−n
∑
δ

(
n

δ

)
2−δ

3δ + 1

⩾
1

3n+ 1

(
3

4

)n

.

(d) Deduce a probabilistic algorithm that returns with probability ⩾ 1
2 a solution of satisfiable

3-SAT instance with n variables with poly(n)
(
4
3

)n operations.

École polytechnique 5 PA informatique

Solution — Call WalkSAT(P, a, 3n) with independent and uniformly distributed
assignments a until obtaining a solution. After K = (3n+ 1)

(
4
3

)n calls, the
probability to get a solution is at least

1− (1− 1/K)
K ⩾ 1− e−1 ⩾

1

2
.

École polytechnique 6 PA informatique

