Advanced algorithms

Exercise sheet \#2 (Solutions) - NP-completeness, branch-and-bound, exponential-time algorithms

September 28, 2022

Exercice 1 (NP-completeness of Hitting SET). The problem Hitting set is the following:
Input: A finite collection \mathcal{C} of finite sets of integers; an integer $k \geqslant 0$.
Question: Is there a set $S \subset \mathbb{N}$ such that $\# S \leqslant k$ and $A \cap S \neq \varnothing$ for any $A \in \mathcal{C}$?
Using the NP-complete problem Vertex cover, show that Hitting set is NP-complete.
Solution - It is clear that Hitting set is in NP because the set S is a certificate that we can check in polynomial time.

Let $G=(V, E)$ a graph and $k \geqslant 0$ an integer, forming an instance of Vertex cover. We may assume that $V \subset \mathbb{N}$, i.e. the vertices are integers. Let $\mathcal{C}=E$. It is easy to check that G has a vertex cover with $\leqslant k$ elements if and only if \mathcal{C} has a hitting set with $\leqslant k$ elements. Since Vertex cover is NP-hard, then Hitting set is also $N P$-hard. Since it is in NP, it is also NP-complete.

Exercice 2 (NP-completeness of Feedback arc Set). Let $G=(V, E)$ be a directed graph. A feedback arc set is a subset of E such that the graph $(V, E \backslash C)$ is acyclic.

The problem Feedback arc set is the following:
Input: A directed graph G; an integer $k \geqslant 0$.
Question: Does G admit a feedback arc set of cardinality $\leqslant k$?
(a) Show that Feedback arc set is in NP.

Solution - We can check that a given set of edges is a feedback arc set in polynomial time using a depth first search to detect cycles.

Given an undirected graph $G=(V, E)$, we define a directed graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows: $V^{\prime}=V \times\{0,1\}$ and $E^{\prime}=\left\{\left(x^{0}, y^{1}\right)\right.$ s.t. $\left.\{x, y\} \in E\right\} \cup\left\{\left(x^{1}, x^{0}\right)\right.$ s.t. $\left.x \in V\right\}$, where, for short, we denote x^{i} the pair $(x, i) \in V^{\prime}$.
(b) Show that G^{\prime} has a minimum-cardinality feedback arc set with edges only of type (x^{1}, x^{0}).

Solution - Let C be a feedback arc set of G^{\prime}. Replace each edge $\left(x^{0}, y^{1}\right)$ in C by $\left(y^{1}, y^{0}\right)$ to form a set C^{\prime}. Then $\left|C^{\prime}\right| \leq|C|$. Assume that there exists a cycle γ in $G^{\prime \prime}=\left(V^{\prime}, E^{\prime} \backslash C^{\prime}\right)$. Since $\left(V^{\prime}, E^{\prime} \backslash C\right)$ is acyclic, γ must pass through an edge $c \in C$, which is of the form $\left(x^{0}, y^{1}\right)$. The following edge in γ is then $\left(y^{1}, y^{0}\right)$, which belongs to C^{\prime}. Contradiction. Therefore, $G^{\prime \prime}$ is acyclic, and C^{\prime} is a feedback arc set of G^{\prime}.
(c) Show that Feedback arc set is NP-complete. Hint: use Vertex cover.

Solution -
Let $(G=(V, E), k)$ be an instance of VERTEX-COVER, i.e. G is an undirected graph and k is some non negative integer.
Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the directed graph obtained via the previous construction.

- Assume that G admits a vertex cover S of size $\leq k$, and let $F_{S}:=\left\{\left(x^{1}, x^{0}\right) \mid\right.$ $x \in S\}$. If γ is a cycle of $\left(V^{\prime}, E^{\prime} \backslash F_{S}\right)$ then it passes through an edge of the form $\left(x^{0}, y^{1}\right)$, and therefore through $\left(x^{1}, x^{0}\right)$ and $\left(y^{1}, y^{0}\right)$. It corresponds to the edge $\{x, y\} \in E$. Since S is a vertex cover, we can assume without loss of generality (wlog) that $x \in S$. But then, $\left(x^{1}, x^{0}\right) \in F_{S}$ which contradicts the fact that γ passes through it. So F_{S} is a feedback arc set of size k.
- Assume that G^{\prime} admits a feedback arc set C of size $\leq k$. Using the previous question, we can assume wlog that C contains only edges of type $\left(x^{1}, x^{0}\right)$. Let $S_{C}:=\left\{x \mid\left(x^{1}, x^{0}\right) \in C\right\}$. Let $\{a, b\} \in E$. Notice that $\left(a^{1}, a^{0}\right),\left(a^{0}, b^{1}\right),\left(b^{1}, b^{0}\right),\left(b^{0}, a^{1}\right)$ is a cycle of G^{\prime}. Therefore, either $\left(a^{1}, a^{0}\right) \in C$ or $\left(b^{1}, b^{0}\right) \in C$, which is exactly $a \in S_{C}$ or $b \in S_{C}$, i.e. S_{C} is a vertex cover.

We proved that G has a vertex cover of size $\leq k$ if and only if G^{\prime} has a feedback arc set of size $\leq k$. Since constructing G^{\prime} can be done in polynomial time, Feedback arc set is $N P$-complete.

Exercice 3 (Dynamic programming for TSP). Let $G=(V, E)$ be a complete graph with a weight function $w: E \rightarrow \mathbb{R} \cup\{+\infty\}$. The travelling salesman problem (TSP) is the problem of computing a minimum-weight cycle in G that goes through all vertices exactly once. The naive solution to solve this problem is the enumeration of all $n!$ cycles (where $n=\# V$).

The goal of this exercise is to do better and to provide an exponential time algorithm.
(a) Let $S \subset V$ containing at least two vertices, and let $s \in S$. For any $t \in S$, we denote by $W(S, t)$ the total weight of a shortest path from s to t, visiting exactly once the elements of S and no other vertex.

Give a recursive expression of $W(S, t)$.
Solution - Let γ be a path reaching the optimum $W(S, t)$, and let a be the penultimate vertex in γ. Therefore, the subpath from s to a reaches the optimum $W(S \backslash\{t\}, a)$. Then,

$$
W(S, t)=\min _{a \in S \backslash\{t\}}(W(S \backslash\{t\}, a)+w(a, t)) .
$$

(b) Deduce an algorithm to solve TSP in time $O\left(n^{2} 2^{n}\right)$ using the principle of dynamic programming.

Solution - Fix a vertex $s \in V$ as starting and ending point. By definition, and using the notations of the previous question, the minimum-weight solution of TSP on G is given by

$$
\min _{t \in V}(W(V, t)+d(t, s)) .
$$

For any t, we can compute recursively $W(V, t)$ by dynamic programming using the previous question: It suffices to compute all the $W(S, t)$ where $S \subset V$, starting from $\# S=2$ and increasing S. For each t, there are 2^{n} subsets $S \subset V$ and therefore there are $n \times 2^{n}$ such pairs (S, t).
Notice that for any vertex $a \in V, W(\{a, s\}, a)=w(a, s)$, and using the previous formula we can compute $W(S, t)$ by induction on $\# S$, wich costs $O(n)$ operations. Therefore, the solution of TSP can be computed in time $O\left(n^{2} 2^{n}\right)$.

Exercice 4 (WalkSAT). We study a randomized local search procedure to solve 3-SAT problem. It takes as input a 3-SAT instance P and an assigment a of the variables that does not satisfy P :

```
procedure Update( }P,a
        Choose a clause c of P that is not satisfied by a
        Choose randomly one the variables appearing in c
        Flip the assignment of v}\mathrm{ in }
end procedure
```

For two affectations a and b of the variables of P, let $d(a, b)$ denote the Hamming distance of a and b : this is the number of variables that are not assigned to the same value in a and b.

We consider now a 3-SAT instance P that has a solution s.
(a) Let a be an assignment of the variables of P that does not satisfy P, and let $a^{\prime}=$ $\operatorname{Update}(P, a)$. Show that $d\left(a^{\prime}, s\right)=d(a, s) \pm 1$ and that

$$
\mathbb{P}\left[d\left(a^{\prime}, s\right)=d(a, s)-1\right] \geqslant \frac{1}{3}
$$

Solution - Let c be a clause of P that is not satisfied by a, that is, all three literals in c are given the value 0 by a. The clause c is satisfied by s, so at least one of the literals is given the value 1 by s. Let v be the variable in this literal.
The value of v in a is the opposite of its value in s, otherwise c would be satisfied by a. With probability $\frac{1}{3}$, the variable v is chosen to be flipped. In this case $d\left(a^{\prime}, s\right)=d(a, s)-1$.

We now consider the following algorithm that applie the procedure Update until finding a solution, or stops with the symbol \varnothing if it has not found anything after N iterations.

```
Intput: a 3-SAT instance \(P\), an assignment \(a\) and an integer \(N\)
Output: a solution of \(P\) or \(\varnothing\)
    procedure WalkSAT \((P, a, N)\)
        for \(k\) from 1 to \(N\) do
            if \(a\) satisfies \(P\) then
                    return \(a\)
            end if
        \(a \leftarrow \operatorname{Update}(P, a)\).
        end for
        return \(\varnothing\)
    end procedure
```

Let $h(a, N)$ be the probability that WalkSAT (P, a, N) returns a solution of P.
(b) Let a be an assignment of the variables and let $\delta=d(a, s)$. Show that

$$
h(a, 3 \delta) \geqslant\binom{ 3 \delta}{\delta}\left(\frac{1}{3}\right)^{2 \delta}\left(\frac{2}{3}\right)^{\delta}
$$

For this, one can compare $h(a, 3 \delta)$ with the probability to obtain δ tails and 2δ faces out of 3δ coin flips with a biased coin.

Solution -
Let a_{i} denote the assignment of the variables after step i, with $a_{0}=a$, and let $D_{i}:=d\left(a_{i}, s\right)$. Using the previous question, D_{i} realizes a biased random walk on \mathbb{N}, with an absorbing state at 0 , starting at δ and going to the left with probability $q \geq \frac{1}{3}$ and to the right with probability $1-q$. Then $h(a, 3 \delta)$ is exactly the probability that this random walk reaches 0 in 3δ steps.

We will use a classical proof technique in probability theory called coupling: To compare two random distributions \mathcal{D}_{1} and \mathcal{D}_{2} it suffices to introduce a random vector (X, Y) whose marginal distributions are \mathcal{D}_{1} and \mathcal{D}_{2} but such that X and Y are related such that it is easy to compare them.
Let $\left(\delta_{i}\right)$ be a sequence of i.i.d random variables in $\{-1,1\}$, such that $\mathbb{P}\left(\delta_{i}=\right.$ $-1)=q$ and $\mathbb{P}\left(\delta_{i}=1\right)=1-q$, and let's consider the following random walk on \mathbb{Z} :

$$
X_{0}=\delta \text { and } X_{i+1}=X_{i}+\delta_{i}
$$

Then, the sequence $\left(D_{i}^{\prime}\right)$ such that $D_{i}^{\prime}=X_{i}$ while $X_{i} \geq 0$ and 0 once $X_{i}<0$ has the same distribution as $\left(D_{i}\right)$ and clearly

$$
h(a, 3 \delta)=\mathbb{P}\left(D_{3 \delta}=0\right)=\mathbb{P}\left(D_{3 \delta}^{\prime}=0\right) \geq \mathbb{P}\left(X_{3 \delta}=0\right)
$$

and it suffices to find a lower bound on the probability that X reaches 0 . To handle that, we will compare this walk to a random walk whose behaviour is well understood.

Now, let $\left(\varepsilon_{i}\right)$ be a sequence of i.i.d random variables in $\{-1,1\}$, such that $\mathbb{P}\left(\varepsilon_{i}=-1\right)=\frac{1}{3}$ and $\mathbb{P}\left(\varepsilon_{i}=1\right)=\frac{2}{3}$, and let's consider the following "perfectly biased" random walk on \mathbb{Z} :

$$
Y_{0}=\delta \text { and } Y_{i+1}=Y_{i}+\varepsilon_{i}
$$

Define a new random walk Z such that $Z_{0}=Y_{0}=\delta$

- If $Y_{i}=-1$ then $Z_{i}=-1$,
- If $Y_{i}=1$ then $Z_{i}=-1$ with probability $\frac{q-1 / 3}{2 / 3}=\frac{3 q-1}{2}$.

Then,

$$
\begin{aligned}
\mathbb{P}\left(Z_{i}=-1\right) & =\mathbb{P}\left(Z_{i}=-1 \mid Y_{i}=-1\right) \mathbb{P}\left(Y_{i}=-1\right)+\mathbb{P}\left(Z_{i}=-1 \mid Y_{i}=1\right) \mathbb{P}\left(Y_{i}=1\right) \\
& =1 \times \frac{1}{3}+\frac{3 q-1}{2} \times \frac{2}{3} \\
& =q
\end{aligned}
$$

Therefore, the sequence of Z_{i} has exactly the same distribution of the walk $\left(X_{i}\right)$, but now it is easy to compare it to the walk $\left(Y_{i}\right)$: We clearly have

$$
\left(Y_{3 \delta}=0\right) \subset\left(Z_{3 \delta}=0\right)
$$

All in all,

$$
h(a, 3 \delta) \geq \mathbb{P}\left(X_{3 \delta}=0\right)=\mathbb{P}\left(Z_{3 \delta}=0\right) \geq \mathbb{P}\left(Y_{3 \delta}=0\right)
$$

Conditioning on the number of steps on the right (i.e. such that $\varepsilon_{i}=1$), we find that

$$
\mathbb{P}\left(Y_{3 \delta}=0\right)=\sum_{k=0}^{\delta}\binom{3 \delta}{k}\left(\frac{1}{3}\right)^{3 \delta-k}\left(\frac{2}{3}\right)^{k} \geq\binom{ 3 \delta}{\delta}\left(\frac{1}{3}\right)^{2 \delta}\left(\frac{2}{3}\right)^{\delta}
$$

(c) We admit the lower bound $\binom{3 \delta}{\delta} \geqslant(3 \delta+1)^{-1}\left(\frac{27}{4}\right)^{\delta}$. If a is random and uniformly distributed among all possible assignments of the n variables of P, show that
$\mathbb{P}[\operatorname{WALkSAT}(P, a, 3 n)$ returns a solution of $P] \geqslant(3 n+1)^{-1}\left(\frac{3}{4}\right)^{n}$.
Solution - For any assignment a, $h(a, 3 n) \geqslant h(a, 3 \delta)$. Moreover, there is 2^{n} possible assignments of the n variables, and, for a given δ, there is $\binom{n}{\delta}$ assignments a with $d(a, s)=\delta$. Thus,

$$
\begin{aligned}
\mathbb{P}[\text { WALKSAT } & (P, a, 3 n) \text { returns a solution of } P] \\
& =2^{-n} \sum_{a} h(a, 3 n) \\
& =2^{-n} \sum_{\delta=0}^{n} \sum_{d(a, s)=\delta} h(a, 3 n) \\
& \geqslant 2^{-n} \sum_{\delta=0}^{n} \sum_{d(a, s)=\delta}^{a} h(a, 3 \delta) \\
& \geqslant 2^{-n} \sum_{\delta=0}^{n} \sum_{\substack{a \\
d(a, s)=\delta}}\binom{3 \delta}{\delta}\left(\frac{1}{3}\right)^{2 \delta}\left(\frac{2}{3}\right)^{\delta} \\
& =2^{-n} \sum_{\delta=0}^{n}\binom{n}{\delta}\binom{3 \delta}{\delta}\left(\frac{1}{3}\right)^{2 \delta}\left(\frac{2}{3}\right)^{\delta} \\
& \geqslant 2^{-n} \sum_{\delta}\binom{n}{\delta} \frac{2^{-\delta}}{3 \delta+1} \\
& \geqslant \frac{1}{3 n+1}\left(\frac{3}{4}\right)^{n} .
\end{aligned}
$$

(d) Deduce a probabilistic algorithm that returns with probability $\geqslant \frac{1}{2}$ a solution of satisfiable 3-SAT instance with n variables with $\operatorname{poly}(n)\left(\frac{4}{3}\right)^{n}$ operations.

Solution - Call WalkSAT ($P, a, 3 n$) with independent and uniformly distributed assignments a until obtaining a solution. After $K=(3 n+1)\left(\frac{4}{3}\right)^{n}$ calls, the probability to get a solution is at least

$$
1-(1-1 / K)^{K} \geqslant 1-e^{-1} \geqslant \frac{1}{2}
$$

