Advanced algorithms

Exercise sheet #2 (Solutions) — NP-completeness, branch-and-bound,
exponential-time algorithms

September 28, 2022

Exercice 1 (NP-completeness of HITTING SET). The problem HITTING SET is the following:

Input: A finite collection C of finite sets of integers; an integer k > 0.
Question: Is there a set S C N such that #5S <k and ANS # @ for any A € C?

Using the NP-complete problem VERTEX COVER, show that HITTING SET is NP-complete.

Solution — It is clear that HITTING SET is in NP because the set S is a certificate
that we can check in polynomial time.

Let G = (V,E) a graph and k>0 an integer, forming an instance of VERTEX COVER.
We may assume that V- C N, i.e. the vertices are integers. Let C = E. It is easy to
check that G has a vertex cover with < k elements if and only if C has a hitting set
with < k elements. Since VERTEX COVER is NP-hard, then HITTING SET is also
NP-hard. Since it is in NP, it is also NP-complete.

Exercice 2 (NP-completeness of FEEDBACK ARC SET). Let G = (V, E) be a directed graph. A
feedback arc set is a subset of E such that the graph (V, E'\ C) is acyclic.
The problem FEEDBACK ARC SET is the following:

Input: A directed graph G; an integer k > 0.
Question: Does G admit a feedback arc set of cardinality < k7

(a) Show that FEEDBACK ARC SET is in NP.

Solution — We can check that a given set of edges is a feedback arc set in
polynomial time using a depth first search to detect cycles.

Given an undirected graph G = (V, E), we define a directed graph G’ = (V' E’) as follows:
V' =V x{0,1} and FE' = {(xo,yl) st. {z,y} € E} U {(ml,xo) s.t. x € V}7 where, for short,
we denote z° the pair (x,4) € V.

(b) Show that G’ has a minimum-cardinality feedback arc set with edges only of type (x!, z°).

Solution — Let C be a feedback arc set of G'. Replace each edge (x°,y*) in C
by (y*,y°) to form a set C'. Then |C'| < |C|. Assume that there exists a cycle
v in G" = (V',E\C"). Since (V', E'\C) is acyclic, v must pass through an
edge ¢ € C, which is of the form (2°,yt). The following edge in ~y is then
(y*,y°), which belongs to C'. Contradiction. Therefore, G" is acyclic, and C'
is a feedback arc set of G'.

Ecole polytechnique 1 PA informatique

(¢) Show that FEEDBACK ARC SET is NP-complete. Hint: use VERTEX COVER.

Solution —

Let (G = (V, E), k) be an instance of VERTEX-COVER, i.e. G is an undirected
graph and k is some non negative integer.

Let G' = (V' E') be the directed graph obtained via the previous construction.

Assume that G admits a vertex cover S of size < k, and let Fs := {(a!,2°) |
x € S}. If v is a cycle of (V',E'\Fs) then it passes through an edge of the
form (2°,y1), and therefore through (x*,2°) and (y*,y°). It corresponds to
the edge {x,y} € E. Since S is a vertex cover, we can assume without loss
of generality (wlog) that x € S. But then, (x',2°) € Fs which contradicts
the fact that v passes through it. So Fs is a feedback arc set of size k.

Assume that G' admits a feedback arc set C of size < k. Using the
previous question, we can assume wlog that C contains only edges of
type (zt,20). Let Sc := {z | (z',2") € C}. Let {a,b} € E. Notice
that (a',a®), (a®, bb), (b, 0°), (1%, at) is a cycle of G'. Therefore, either
(at,a®) € C or (b',b°) € C, which is exactly a € Sc or b € Sc, ie. Sc is
a vertex cover.

We proved that G has a vertex cover of size < k if and only if G’ has a feedback
arc set of size < k. Since constructing G' can be done in polynomial time,
FEEDBACK ARC SET is NP-complete.

Exercice 3 (Dynamic programming for TSP). Let G = (V, E) be a complete graph with a
w: E — RU{+o00}. The travelling salesman problem (TSP) is the problem of
computing a minimum-weight cycle in G that goes through all vertices exactly once. The naive

weight function

solution to solve

this problem is the enumeration of all n! cycles (where n = #V).

The goal of this exercise is to do better and to provide an exponential time algorithm.

(a) Let S C V containing at least two vertices, and let s € S. For any t € S, we denote by
W (S, t) the total weight of a shortest path from s to ¢, visiting exactly once the elements

of S and no other vertex.

Give a rec

ursive expression of W(S,t).

Solution — Let v be a path reaching the optimum W (S,t), and let a be the

penu

ltimate vertex in . Therefore, the subpath from s to a reaches the optimum

W (S\{t},a). Then,

(b) Deduce an algorithm to solve TSP in time O(n?2") using the principle of dynamic pro-

gramming.

W (S,t) = aensn\r{lt}(W@\{t}, a) + w(a, t)).

Solution — Fix a vertex s € V' as starting and ending point. By definition, and
using the notations of the previous question, the minimum-weight solution of

TSP

Ecole polytechni

on G is given by

min (W(V, t) + dt, s))

teV

que 2 PA informatique

For any t, we can compute recursively W(V,t) by dynamic programming using
the previous question: It suffices to compute all the W(S,t) where S C V,
starting from #S = 2 and increasing S. For each t, there are 2™ subsets S C V
and therefore there are n x 2" such pairs (S,t).

Notice that for any vertex a € V, W({a, s},a) = w(a, s), and using the previous
formula we can compute W (S, t) by induction on #S, wich costs O(n) operations.

Therefore, the solution of TSP can be computed in time O(n?2").

Exercice 4 (WalkSAT). We study a randomized local search procedure to solve 3-SAT problem.
It takes as input a 3-SAT instance P and an assigment a of the variables that does not satisfy P:

procedure UPDATE(P, a)
Choose a clause ¢ of P that is not satisfied by a
Choose randomly one the variables appearing in ¢
Flip the assignment of v in a

end procedure

For two affectations a and b of the variables of P, let d(a,b) denote the Hamming distance of a
and b: this is the number of variables that are not assigned to the same value in a and b.
We consider now a 3-SAT instance P that has a solution s.

(a) Let a be an assignment of the variables of P that does not satisfy P, and let ' =
UPDATE(P, a). Show that d(a’,s) = d(a,s) £ 1 and that

Pld(d’,s) = d(a,s) — 1] >

W = ~—

Solution — Let ¢ be a clause of P that is not satisfied by a, that is, all three
literals in ¢ are given the value 0 by a. The clause ¢ is satisfied by s, so at least
one of the literals is given the value 1 by s. Let v be the variable in this literal.

The value of v in a is the opposite of its value in s, otherwise ¢ would be satisfied
by a. With probability %, the variable v is chosen to be flipped. In this case
d(da’,s) =d(a,s) — 1.

We now consider the following algorithm that applie the procedure UPDATE until finding a
solution, or stops with the symbol @ if it has not found anything after NV iterations.

Intput: a 3-SAT instance P, an assignment a and an integer N
Output: a solution of P or &
procedure WALKSAT(P, a, N)
for k£ from 1 to N do
if a satisfies P then
return a
end if
a < UPDATE(P, a).
end for
return &
end procedure

Let h(a, N) be the probability that WALKSAT(P, a, N) returns a solution of P.

Ecole polytechnique 3 PA informatique

(b) Let a be an assignment of the variables and let § = d(a, s). Show that

35\ 1\ /2)°
h(a,36) > = = .
w=(5)(5) (5)
For this, one can compare h(a,3d) with the probability to obtain ¢ tails and 2§ faces out
of 34 coin flips with a biased coin.

Solution —

Let a; denote the assignment of the variables after step i, with ag = a, and
let D; := d(a;,s). Using the previous question, D, realizes a biased random
walk on N, with an absorbing state at 0, starting at 6 and going to the left with
probability q > % and to the right with probability 1 —q. Then h(a,3d) is exactly
the probability that this random walk reaches 0 in 39 steps.

We will use a classical proof technique in probability theory called coupling: To
compare two random distributions D1 and D it suffices to introduce a random
vector (X,Y') whose marginal distributions are Dy and Dy but such that X and
Y are related such that it is easy to compare them.

Let (6;) be a sequence of i.i.d random variables in {—1,1}, such that P(6; =
—1)=¢q and P(6; =1) =1 —q, and let’s consider the following random walk on
Y/

Xo=90 and X;41 = X; + 9;.
Then, the sequence (D) such that D} = X; while X; > 0 and 0 once X; < 0 has
the same distribution as (D;) and clearly
h(a,36) = P(D3s = 0) = P(Dg5 = 0) > P(X35 = 0)
and it suffices to find a lower bound on the probability that X reaches 0. To

handle that, we will compare this walk to a random walk whose behaviour is well
understood.

Now, let (g;) be a sequence of i.i.d random variables in {—1,1}, such that
1
Ple; =—1) = 3 and P(e; = 1) = %, and let’s consider the following “perfectly

biased” random walk on 7Z:

Yo=0 and Y11 =Y; + €.
Define a new random walk Z such that Zyg =Yy =6
o IfY, =—1 then Z; = —1,
o IfY; =1 then Z; = —1 with probability ‘15}3{3 = 31
Then,

Ecole polytechnique 4 PA informatique

Therefore, the sequence of Z; has exactly the same distribution of the walk (X;),
but now it is easy to compare it to the walk (Y;): We clearly have

(Y35 =0) C (Z35 = 0).

All in all,
h(a,30) > P(X35 =0) =P(Z35 = 0) > P(Y35 = 0).

Conditioning on the number of steps on the right (i.e. such thate; = 1), we
find that

M WIOIOEWIONOR

(¢) We admit the lower bound (355) >(30+1)71t (%7)5. If a is random and uniformly distributed
among all possible assignments of the n variables of P, show that

3 n
P [WALKSAT(P, a, 3n) returns a solution of P] > (3n +1)~* (4) .

Solution — For any assignment a, h(a,3n) > h(a,38). Moreover, there is 2™ pos-
sible assignments of the n variables, and, for a given d, there is (’g) assignments a

with d(a,s) = 6. Thus,

P[WALKSAT(P,a,3n) returns a solution of P]

=2""> h(a,3n)
=27" Z Z h(a,3n)

— a
9=0 d(a,s)=48

>2™" h(a, 39)
> 2

0=0 J(as)=5

% = ()6 6)

d(a,s

{(Z)()())

§
27y
o

23 (5) s
)
1 3
> —
3n+1 <4)

(d) Deduce a probabilistic algorithm that returns with probability > a solution of satisfiable
3-SAT instance with n variables with poly(n) (2)" operations.

WV

Ecole polytechnique 5 PA informatique

Solution — Call WALKSAT (P, a, 3n) with independent and uniformly distributed
assignments a until obtaining a solution. After K = (3n+1) (%)n calls, the
probability to get a solution is at least

1-(1-1/K)>1-¢e'>

DN =

Ecole polytechnique 6 PA informatique

