
Advanced algorithms
Exercise sheet #4 (Solutions) – Parametric complexity (continued)

October 19, 2022

Exercice 1 (3-Coloring and treewidth). The 3-Coloring problem is the following:

Input: A graph G;
Question: Does the vertices of G admit a coloring with 3 colors such that no two adjacent

vertices have the same color?

Show that this problem is FPT with respect to the treewidth of the input. In order to do that,
give an algorithm that takes as input a graph G together with a nice tree decomposition of width
k and m nodes and that computes a 3-coloring (or ensures that there is no such coloring) in time
O(m · k · 3k).

Solution — Note that given any tree decomposition of G it is easy to get a de-
composition in nice form with same width. Such a decomposition is way easier to
handle.

We consider a nice tree decomposition T of G that we root in one arbitrary node R.
Then, there are four types of nodes:

• Addition (Only one child)

• Deletion (Only one child)

• Duplication (Two children)

• Leaves (0 child)

Each node t of T is associated with a subset Vt of the vertices of G, that we call
a bag. Moreover, we consider the subgraph Gt of G induced by the union of all Vs,
where s is in the subtree rooted at t (We only keep those vertices and the edges that
join them).

We will use a bottom-up approach. The idea is to solve a subproblem corresponding
to each subtree, beginning by the problem induced by the leaves:

Given a node t associated with its bag Vt = {x1, . . . , xi}, the subproblem will be to
find the set Ct of partial 3-colorings of the vertices in the bag Vt that can be extended
to a 3-coloring of the subgraph Gt. More formally, the answer to this subproblem
can be represented as a boolean table B(t) of 3i entries corresponding to all maps
Vt 7→ {1, 2, 3}. For any such map c, the entries corresponding to c will be TRUE if c
extends to a 3-coloring of Gt and FALSE otherwise.

Therefore, the graph G has a 3-coloring iif B(R) is not entirely FALSE.

Let’s distinguish the four cases:

École polytechnique 1 PA informatique

1. Leaf. Then Vt is a singleton {x}, and for any coloring of x, B(t, x) is TRUE.
The computation complexity is O(1).

2. Deletion node.

Vt

Vt ∪ {v}

Then t has a single child s and Vs = Vt ∪ {v} for some
vertex v not in Vt. (So that v is deleted when we go up the
tree.) We observe that Gt = Gs and it follows easily that
Ct = {ϕ|Vt | ϕ ∈ Cs}. When we deal with t we already delt
with s, therefore the computation complexity is O(#Cs) =
O(3k), where k is the treewidth.

3. Addition node.

Vs ∪ {v}

Vs

Then t has a single child s and Vt = Vs ∪ {v} for some
vertex v not in Vs. (So that v is added when we go up the
tree.) Basic properties of tree decompositions ensure that v
is not Gs and that any vertex in Gs that is adjacent to v
is in Vt.
When we deal with t, we already know the partial coloring
of Vs that extend to a coloring of Gs. To decide whether
such a coloring ϕ|Vs

can be extended in a coloring of Gt, we
only need to exclude the colors given by ϕ|Vs

to neighbors
of v in Vt.
So we have

Ct =
{
ϕ : ϕ|Vs

∈ Cs and ϕ(v) ̸= ϕ(w) if (v, w) ∈ E
}
.

The computation complexity is O(k · 3k).
4. Duplication node.

Vt

Vt Vt

Then t has two children r and s and Vt = Vr = Vs.
However, the graphs Gr and Gs are in general dferent
and more precisely the intersection of those two graphs
are reduced to vertices in Vt. Two 3-colorings of Gr

and Gs extend to a coloring of Gt iff they agree on
Vt. It follows easily that Ct = Cr ∩ Cs, and B(t) =
B(r) ∧B(s). The computation complexity is O(3k).

The total complexity is O(m · k · 3k) where m is the size of T .

Exercice 2 (Quadratic kernel for MaxSat). The problem MaxSat is the following:

Input: A SAT formula given in CNF with m clauses; an integer k;
Question: Is there an assignment of the variables that satisfies at least k clauses?

(a) Show that the problem always has a solution if k ⩽ m
2 .

Solution — Let p (resp. q) be the number of clauses satisfied by the assignment
of all variables to TRUE (resp. FALSE). It is clear that p + q ⩾m, so p ⩾ k
or q ⩾ k.

École polytechnique 2 PA informatique

(b) Show an instance can always be reduced in polynomial time to another where no clause
contains more than k literals.

Solution — Assume that the input is (Φ ∧ L, k), where L is a clause with ⩾k
literals. Then this instance is equivalent to (Φ, k− 1). One implication is trivial.
For the other, consider an assignment of the variable that satisfies k − 1 clauses
in Φ. We can pick k − 1 variables whose assignment is enough to satisfy these
k − 1 clauses. Then we pick a variable in L, different from the previous ones,
and assign it in order to satisfy L.

(c) Show that every instance of MaxSat has a kernel of size O(k2).

Solution — By the previous question, we may assume that no clause contains
more than k literals. By the first question, we may assume that the total number
of clauses is ⩽ 2k. So we obtain a kernel of size O(k2).

Exercice 3 (Paths and colorings). We consider the problem PartialHamiltonian:

Input: G = (V,E) a graph; k an integer;
Output: Is there a path in G visiting exactly ⩾k vertices and no vertex more than once?

We will study in particular the case where k = O(log n), where n is the number of vertices of G.

(a) Give a naive algorithm. Is it polynomial in n when k = O(log n)?

Solution — By recursive exploration we can test the n neighbors of each vertex,
and the next n− 1 neighbors, and so on and so forth. This can be done in time
n(n− 1) . . . (n− k − 1) ∼ nk. This is not polynomial, even with k = O(log n).

(b) Let C : V → {1, . . . , k} be a coloring of G with k colors (without constraints on the colors
of adjacent vertices). A path is totally multicolor if every vertex has a different color.

Show how to decide the existence a totally multicolor path of length k in time O(2k · n2).
Hint: dynamic programming.

Solution — For a subset S ⊆ {1, . . . , k} and a vertex v, let TS,v be the number
of totally multicolor paths with colors in S, of length #S and ending at v. Then
T{c},v = 1 if C(v) = c and 0 otherwise. And by induction on #S, we compute
further that TS,v = 0 if C(v) ̸∈ S and

TS,v =
∑

w neighbor of v
s.t. C(w)∈S

TS\{C(v)},w

otherwise. This gives a O(2k · n2) algorithm: O(2k · n) values to compute and
each application of the recursive formula costs O(n). (We just want to check that
some T{1,...,k},v is > 0 so we don’t need to actually compute the big integers).

(c) Give a probabilistic algorithm to solve PartialHamiltonian. Is the complexity polynomial
when k = O(log n)?

Solution — We pick a k-coloring at random and decide the existence of a totally
multicolor path of length k. If there is one, then PartialHamiltonian has a
solution and we return true. We repeat m times this procedure, with m to be
fixed later, and return false if none of the interations is successful.

École polytechnique 3 PA informatique

• If PartialHamiltonian has no solution, then this procedure always re-
turns FALSE.

• On the contrary, if there exists a solution P , then after the choice of a
random k-coloring, P will be totally multicolor with probability at least k!

kk ∼√
2πke−k.

If we repeat m times this procedure, the probability

So we choose m = ⌊(πk) 1
2 ek⌋. (Observe that 1− (1− p)⌊

1
p ⌋ ⩾ 1

2 for any p ∈
(0, 1).) Then our algorithm returns always false if the instance has no
solution and return true with probability ⩾ 1

2 if the instance has a solution.

Exercice 4 (HamiltonianCycle and treewidth). The HamiltonianCycle problem is the
following:

Input: A graph G;
Question: Is there a cycle in G that visits all the vertices exactly once ?

Show that HamiltonianCycle is FPT with respect to the treewidth.

Solution — Use the same approach as for the 3-coloring. Be careful in choosing the
subproblem associated to a given node t of the nice tree decomposition so that you
can glue together partial solutions.

One good choice is the following: To each triplet (M,U,L) where U and L are disjoint
subsets of Vt and M is a perfect matching of Vt\(U

⊔
L), decide if there exists a set of

disjoint paths in Gt such that the endpoints of the paths are given by M , the vertices
of U are internal to the paths and the vertices in L are free. The table of a node can
then be indexed by the perfect matching with 2j elements (where 0 ≤ j ≤ ⌊k/2⌊). For
each of these matchings, we need to find the state of at most k− 2j nodes (free nodes
or nodes belonging to a path). This yields a table of at most O(4k2k) entries.

Try to describe the 4 cases.

École polytechnique 4 PA informatique

