
Advanced algorithms
Exercise sheet #5 (Solutions) – SAT solvers

October 26, 2022

Exercice 1 (Lazy data structures). DPLL algorithm (Davis, Putnam, Logemann, Loveland) is a
backtracking algorithm to solve SAT problems. It uses a procedure called Assign(P, v, b) which,
given a CNF SAT formula P , a variable v and a boolean b, returns a CNF SAT formula P ′,
equivalent to P ∧ v (if b is true) or P ∧ ¬v (if b is false). The trivial way to implement Assign
is to simplify P as much as possible after specializing v. But this is costly, so it is worth trying to
do the least possible work. We assume the following properties hold, where P ′ = Assign(P, v, b):

⃝ conflicts are detected: if some clause of P evaluates to false then P ′ = false (This yields
to either a backtracking or returning unsat if no backtracking is possible);

□ full propagation: if P is satisfied by v ← b, then P ′ = ∅.

(a) Write formally a backtracking algorithm for solving SAT problems using Assign.

Solution —

Intput: a CNF SAT instance P
Output: true if P has a solution, false otherwise

procedure Solve(P )
if P = false then

return false
else if P = ∅ then

return true
else

v ← a free variable in P
if Solve(Assign(P, v,true)) then

return true
else if Solve(Assign(P, v, false)) then

return true
else

return false
end if

end if
end procedure

We now assume that we have a procedure LazyAssign which satisfies ⃝ but not □.

(b) Show that DPLL is still valid if we replace Assign with LazyAssign.

École polytechnique 1 PA informatique



Solution — It the exact same algorithm!

The only difference is that the algorithm may not return true as soon as
a solution is found, only when there are no more variables to assign. The
invariant ⃝ ensures correctness: if there is no false clause in P after the lazy
unit propagation, then there is no conflict; and if, in addition, there are no free
variables, then P is just true.

Note that the performance penalty is negligible: once P is satisfied (even if is
not detected), we just have to assign all the remaining variables, we cannot do
wrong choices anymore.

To design such a procedure LazyAssign, we keep for each clause C of the input formula two
pointers to distinct literals of C, called watched literals, satisfying the following property:

△ if one watched literal is assign to false, then the other is assigned to true.

We also maintain for each variable x the list of clauses in which x appears in a watched literal.

(c) Using this data structure, describe a procedure LazyAssign which maintains △ and
satisfies ⃝.

Solution — When we assign a variable v, we look at each clause C in which v
is watched. If the corresponding literal becomes true, there is nothing to do
to ensure △. Otherwise, we try to watch another literal to satisfy △. If this is
impossible, it means that every literal but one in C is false: we have a unit
clause that we can propagate. This gives the following algorithm.

procedure LazyAssign(P , v, b)
for each clause C of P in which v is watched do

L← the watched literal of C in which v appears
if L|v←b = false then

if the other watched literal is unassigned then
instead of L watch another literal that is true or not assigned
if impossible then

propagate the unit clause
end if

end if
end if
return P

end for
end procedure

(d) When backtracking, we need to unassign a variable. Here, we can do it for free. Why?

Solution — When backtracking, we don’t need to undo the moves that we
did. Indeed, no watched literal can have been implied in the conflict, and the
property △ is always maintained when a variable gets unassigned.

Exercice 2 (SAT modeling of 3-coloring). Since SAT solvers are so optimized, in order to solve
NP-hard problems it can be convenient in practice to encode them into a SAT formula (Notice
that it is the reverse way of proving that a problem is NP-hard !).

Given a graph G = (V,E), find a formula Φ in CNF such that Φ is satisfiable if and only if G
has a proper 3-coloring.

École polytechnique 2 PA informatique



Solution — For each vertex vi ∈ V , we introduce 3 variables xi,1, xi,2, xi,3 that encode
in which color is vi: xi,j = 1vi is colored with color k.

Now, we design 3 subformulas Φ1,Φ2,Φ3 such that Φ = Φ1 ∧ Φ2 ∧ Φ3.

• Every vertex is given at least one color:

Φ1
.
=

n∧
i=1

k∨
j=1

xi,j .

• Every vertex is given at most one color:

Φ2
.
=

n∧
i=1

∧
1≤c<d≤3

¬xi,c ∨ ¬xi,d.

• Two adjacent vertices must have different colors:

Φ3
.
=

∧
(i,j)∈E

k∧
c=1

¬xi,c ∨ ¬xj,c.

Exercice 3 (Optimization of SAT modeling). Let x1, . . . , xn be booleans and consider the
following property:

(∗) At most one of the xi is true.

(a) Give a CNF SAT formula in x1, . . . , xn with O(n2) clauses that is equivalent to (∗).
Solution — It was already done in the previous exercise,

∧
i ̸=j(¬xi ∨ ¬xj)

(b) Give a CNF SAT formula in x1, . . . , xn and n auxiliary variables and size O(n) whose
satisfiability (with fixed x1, . . . , xn) is equivalent to (∗).

Solution — Let a⇒ b denote ¬a ∧ b and consider the following formula, with
auxiliary variables s1, . . . , sn:

Φ =

n∧
i=1

(xi ⇒ ¬si) ∧
n−1∧
i=1

(si+1 ⇒ si) ∧
n−1∧
i=1

(xi+1 ⇒ si).

If (∗) holds, then Φ is satisfiable with si = ¬x1 ∧ · · · ∧ ¬xi. Conversely, if (∗)
does not hold, then let i < j be the two smallest indices such that xi and xj

are true. If s1, . . . , sn satisfies Φ, then sj−1 = true (using the third group of
clauses), it follows that si = true (using the second group), but si = False
using the first group. Contradiction.

(c) Give a SAT formula in x1, . . . , xn and O(log n) auxiliary variables and size O(n log n) whose
satisfiability (with fixed x1, . . . , xn) is equivalent to (∗).

Solution — We use a binary encoding. Let r = ⌈log2 n⌉ and consider r auxiliary
variables a0, . . . , ar−1. Let ϵik = ak (resp. ϵik = ¬ak) if the kth binary digits
of i is 1 (resp. 0). Let

Φ =

n∧
i=1

r∧
k=1

¬xi ∨ ϵik.

École polytechnique 3 PA informatique



If xj = true, this clauses implies that ar−1 · · · a0 is the binary representation
of j. So if Φ is satisfiable, then at most one xj can be true since j is determined
by the ak.

Exercice 4 (n queens puzzle). Let’s consider an n× n chessboard. The goal of the n queens
problem is to put n queens on this chessboard such that no queen can attack another one according
to the chess rules. It means that two queens can’t share the same row, the same column (or file)
or the same diagonal. Therefore, on each row and on each file, there is exactly one queen.

source: Wikipedia

We represent a chessboard by an n × n grid indexed by {0, . . . , n − 1}2 where (0, 0) is the
bottom-left cell. Give a formula in CNF whose satisfiability yields a valid solution of the n queens
problem.

Hint: In order to handle the diagonals, find a characterization on the cell (i, j) to belong to a
specific diagonal.

Solution — We introduce n2 fresh variables si,j which will encode whether or not
a queen is assigned to the cell (i, j). The different constraints on the rows and the
columns of the puzzle can be expressed in the following way:

• There is at least one queen on each row:

Φ1
.
=

n∧
i=1

n∨
j=1

si,j .

• There is at least one queen on each column:

Φ2
.
=

n∧
j=1

n∨
i=1

si,j .

• There is at most one queen on each row:

Φ3
.
=

n∧
i=1

∧
1≤j<k≤n

¬si,j ∨ ¬si,k.

• There is at most one queen on each column:

Φ4
.
=

n∧
j=1

∧
1≤k<l≤n

¬sk,j ∨ ¬sl,j .

École polytechnique 4 PA informatique



For the diagonals it is a little bit more complicated. Let D− be the set of lines parallel
to the (0, 0)− (n− 1, n− 1) big diagonal, and let D+ be the set of lines parallel to
the (0, n− 1)− (n− 1, 0) big diagonal.

Each line of D− is characterized by an integer in {−(n−1),−(n−2), . . . , n−2, n−1}
which represents the difference i− j in the cell (i, j). Respectively, any line in D+ is
characterized by an integer in {0, 1, . . . , 2n − 2} which represents the sum i+ j in
the cell (i, j).

• There is at most one queen on each diagonal in D− where d ≥ 0:

Φ4
.
=

n−1∧
d=0

n−1−d∧
j=0

n−1∧
k=j+1

(¬sd+j,j ∨ ¬sd+k,k)

• There is at most one queen on each diagonal in D− where d < 0:

Φ5
.
=

∧
−n+1≤d≤−1

 ∧
0≤j<k≤n−1+d

(¬sd+j,j ∨ ¬sd+k,k)


• There is at most one queen on each diagonal in D+ where 0 ≤ d ≤ n − 1

(Bottom semi-square):

Φ6
.
=

n−1∧
d=0

d∧
i=0

d∧
k=i+1

(¬si,d−i ∨ ¬sk,d−k)

• There is at most one queen on each diagonal in D+ where n ≤ d ≤ 2n − 2
(Upper semi-square):

Φ7
.
=

2n−2∧
d=n

n−1∧
i=1

n−1∧
k=i+1

(¬si,d−i ∨ ¬sk,d−k)

Finally, the formula in CNF that encodes the n queens puzzle is the conjonction of
all of the subformulas:

Φ
.
= Φ1 ∧ Φ2 ∧ Φ3 ∧ Φ4 ∧ Φ5 ∧ Φ6 ∧ Φ7.

Exercice 5 (Bounded model checking). We model a system in the following way: the state of
the system is a boolean vector s ∈ {true, false}d and there is a boolean formula T (s, s′) that
holds if and only if the system can transition from state s to state s′. Some states are invalid
and we want to check that the system avoid them. There is a boolean formula P (s) which holds
if and only if the state s is valid. Lastly, there is a boolean formula I(s) which holds if and only
if s is a possible initial state.

Design an algorithm, using a SAT solver, that decide whether or not the system can reach an
invalid state.

Solution — The first naive try is to check that I(s)∧¬P (s) and T (s, s′)∧P (s)∧¬P (s)
have no solution. The first formula (if not satisfiable) implies that all initial states
are valid, the second implies that a valid state may only transition to a valid state.

École polytechnique 5 PA informatique



But the algorithm is incomplete: it is possible that the the second formula has a
solution but concerning a state that is not reachable from possible initial states.

We consider three families of formulas:

Φn(s0, . . . , sn) = I(s0) ∧ T (s0, s1) ∧ · · · ∧ T (sn−1, sn) ∧ ¬P (sn),

Ψn(s0, . . . , sn) = T (s0, s1) ∧ · · · ∧ T (sn−1, sn) ∧ P (s0) ∧ · · · ∧ P (sn−1) ∧ ¬P (sn),

En(s0, . . . , sn) =
∧

0⩽i<j⩽n

si ̸= sj .

For increasing values of n we compute the satisfiability of Φn and Ψn ∧ En. If Φn is
not satisfiable, then the system may not reach an invalid state in at most n transitions.
If Ψn ∧En is not satisfiable, it means that any sequence of n distinct valid states can
only lead to a valid state. In particular, if both are not satisfiable, then the system
cannot reach an invalid state. So we stop the algorithm as soon as both are not
satisfiable, or Ψn is satisfiable (the system is buggy).

Now, due to the addition of En, it is clear that Ψn ∧ En is not satisfiable when n is
bigger than the number of possible states. So the algorithm terminates.

École polytechnique 6 PA informatique


