
Advanced algorithms
Exercise sheet #6 (Solutions) — Approximation algorithms

November 9, 2022

Exercice 1 (TSP with triangle inequality). Let G be a complete graph with n vertices, labelled
from 1 to n. To each of the 1

2n(n− 1) edges (u, v) is associated a distance d(u, v). The traveling
salesman looks for a minimum-length tour that starts and ends on 1 and visits every vertex
exactly once. The decision version of this problem is NP-complete.

We assume furthermore that the distance d satisfies the triangle inequality: d(u, v) ⩽ d(u,w) +
d(w, v) for any vertex u, v and w.

Let T be a minimum spanning tree, rooted at 1, and let H be the tour obtained by the pre-order
depth first traversal of T .

(a) What is the complexity of computing H?

Solution — This is O(n2 log n) with Kruskal or Prim algorithm. Can be lowered
to O(n2) with more advances algorithms.

(b) Let H∗ be an optimal tour. Show that the length c(T ) of T (that is the sum of the distances
of the edges in T ) is at most the length c(H∗) of H∗.

Solution — If we remove one edge from H∗, we obtain a spanning tree T ∗.
Therefore c(H∗) > c(T ∗)⩾ c(T ), by minimality of T .

(c) Using the triangle inequality, show that c(H) ⩽ 2c(T ). Deduce an approximation algorithm,
with approximation factor 2, for computing an optimal tour.

Solution — Consider the tour L (with repeated vertices) obtained from the
depth-first traversal of T : each edge is taken once downward and one upward.
It is clear that c(L) = 2c(T ). Moreover, H is obtained from L by deleting
upward edges: A path of the form b → a → b → c is replaced by b → a → c
directly, so by the triangle inequality this change cannot increase the distance.
Therefore,c(H) ⩽ c(L) = 2c(T ).

So, by the previous question, c(H) ⩽ 2c(H∗): We have a 2-approximation
algorithm.

Exercice 2 (Multiterminal cut (Pâle 2013)). Let G = (V,E) be a connected graph endowed
with a weight function c(e) ≥ 0 for each edge e ∈ E and with a distinguished subset S of vertices,
called terminals.

A multiterminal cut of G is a set of edges F ⊆ E whose removal would disconnect all terminals
from each other.

The weight of a multiterminal cut is the sum of the weight of its elements. Given S, we aim at
computing a minimum-weight multiterminal cut, or rather an approximation.

École polytechnique 1 PA informatique



(a) Given a multiterminal cut F and v ∈ S, let Gv[F ] be the connected component of G \ F
containing v. Moreover, let Fv be the subset of F of all edges with exactly one end in Gv[F ].
Show that any path in G from v to any other w ∈ S has an edge in Fv.

Solution — Let w ∈ S, w ̸= v. Let P be a path joining v and w. By definition
of a multiterminal cut, P passes through an edge in F . Therefore, it must go
out of the connected component Gv[F ]: It contains an edge with only one end in
Gv[F ], i.e. that belongs to Fv.

(b) For v ∈ S, let Ev be a minimum-weight set of edges such that any path in G from v to any
other w ∈ S has an edge in Ev. Show that Ev can be computed in polynomial time. What
is the complexity of your algorithm ?

Solution —
The idea is to build a flow network from G and consider all vertices S \ {v} as
a single terminal t. The problem would now reduce to finding a v − t cut of
minimum capacity in this flow network.
To build the flow network from G, we transform each edge e in two edges e1, e2
(to make them directed) both with capacity c(e). Moreover, we add an edge (w, t)
for each w ∈ S \ {v}.
By the max-flow min-cut theorem, a v − t cut can be computed with a flow
algorithm such as Edmond–Karp algorithm, in complexity O(n2m).

(c) Deduce a 2-approximation algorithm for the problem of computing a minimum-weight
multiterminal cut.

Solution — Let U =
⋃

v∈S Ev. It is a multiterminal cut.
Let F ∗ be a minimum-weight multiterminal cut. By minimality of each Ev, we
have c(F ∗

v )⩾ c(Ev). So that c(U) ⩽
∑

v∈S c(Ev) ⩽
∑

v∈S c(F ∗
v ). But each edge

of F ∗ can only belong to at most two different F ∗
v . So

∑
v c(F

∗
v ) ⩽ 2c(F ∗).

Exercice 3 (Vertex cover with linear programming). Let G = (V,E) be a graph with a weight
function c(v) ≥ 0 on the vertices. We aim at computing an approximate minimum-weight vertex
cover of G. Recall that a vertex cover is a set S ⊂ V so that each edge has at least one end in S.

Consider the following linear program:

minimize
∑
v∈V

c(v)xv

such that xu + xv ⩾ 1, ∀ {u, v} ∈ E

1 ≥ xv ≥ 0, ∀v ∈ V,

with the optimal value λ∗ and an optimal solution (x∗
v)v∈V .

(a) Let S∗ be a minimum-weight vertex cover of G. Show that c(S∗)⩾ λ∗.

Solution — If x∗
v ∈ {0, 1}, then it is easy to build an optimal solution. Let

S = {v ∈ V | x∗
v}. The constraint xu + xv ≥ 1 for (u, v) ∈ E ensures that each

edge has an end in S, i.e. that S is indeed a vertex cover and λ∗ is exactly the
weight of a S.
Therefore, vertex covers of G correspond to integer solutions. When we allow
xv to take arbitrary real number values, the minimum cannot be larger ! Hence,
λ∗ ≤ c(S∗).

École polytechnique 2 PA informatique



Remark. Adding the extra constraint xv ∈ {0, 1} (or more generally xv ∈ Z) is
called Integer Programming and is significantly harder than Linear Program-
ming.

(b) From the optimal solution (x∗
v)v∈V , construct a vertex cover S of G such that c(S) ⩽ 2λ∗.

Solution — Let S = {v ∈ V | x∗
i ≥ 1

2}.
• For any edge (u, v) ∈ E, we have x∗

u + x∗
v ≥ 1, so either x∗

u ≥ 1
2 or x∗

v ≥ 1
2 .

Thus, at least one of them will be selected in S which is indeed a vertex
cover.

• The set S has only vertices with x∗
v ≥ 1

2 . Therefore, the following inequalities
hold:

1

2
c(S) =

∑
v∈S

c(v)
1

2
≤

∑
v∈S

c(v)x∗
v ≤

∑
v∈V

c(v)x∗
v = λ∗

For further readings, see [?, §11.6].

Exercice 4 (The center selection problem). Let V be a finite set endowed with a distance
function d : V × V → [0,∞) which satisfies the usual properties of distance functions:

• Separation: d(u, v) = 0⇔ u = v for all u, v ∈ S,

• Symmetry: d(u, v) = d(v, u) for all u, v ∈ S,

• Triangle inequality: d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ S.

For any subset S ⊂ V , we define its covering radius

rad(S) = max
v∈V

min
s∈S

d(v, s).

It is the maximal distance of an element of V to the closest element of S. Given an integer k, a
subset S of size ≤ k of minimal covering radius is called a set of centers.

(a) Let r⩾ 0 and assume that there exists a subset S∗ ⊆ V of k centers such that rad(S∗) ⩽ r.
Design a greedy algorithm to compute a S ⊆ V with #S ⩽ k and rad(S) ⩽ 2r.

Solution —
S ← ∅
while ∃v ∈ V, d(v, S) > 2r do

S ← S ∪ {v}
end while

By design, rad(S) ⩽ 2r, it only remains to show that #S ⩽ k. For each v that
is added to S there is some cv ∈ S∗ such that d(cv, v) ⩽ r, by hypothesis. We
want to prove that this cv is unique for each v.

For any distinct v, w ∈ S, d(v, w) > 2r, by design, and, 2r < d(v, w) ⩽
d(v, cv) + d(cv, cw) + d(cw, w) ≤ 2r + d(cv, cw), by the triangle inequality. It
follows that cv ̸= cw.

Therefore, the map v 7→ cv defines an injection from S to S∗, so #S ⩽ #S∗.

(b) Let r∗ be the minimum value of rad(S∗), for S∗ ⊆ V and #S∗ = k. Design an algorithm
to compute in polynomial time a S ⊆ V with #S ⩽ k and rad(S) ⩽ 2r∗.

École polytechnique 3 PA informatique



Solution — We can try to guess r∗ and apply the previous algorithm. Note
that r∗ belongs to the finite set {d(v, w) | v, w ∈ V }. This gives the following
algorithm (which we can refine using dichotomy).

D ← {d(v, w) | v, w ∈ V }
for r ∈ D, by increasing order do

S ← ∅
while ∃v ∈ V, d(v, S) > 2r do

S ← S ∪ {v}
end while
if #S ⩽ k then

return S
end if

end for

We can also guess r∗ on the fly.
S ← ∅
while #S ⩽ k do

v ← argmaxv∈V d(v, S)
S ← S ∪ {v}

end while

We now prove the correctness of this last algorithm. Let S be the output of this
algorithm and let r = rad(S).

Let p ∈ V such that d(p, S) = r and let S′ = S ∪ {p}. We first claim that
for any v, w ∈ S, if v ̸= w then d(v, w) ⩾ r. Indeed, at each iteration of the
algorithm, we pick the point that is the furthest to the previously selected centers.
Since p was not selected, and that d(p, v)⩾ r for any v ∈ S, it follows that all
centers have distance at least r to the previous ones.

Now, S′ is covered by the k balls of radius r∗ whose centers are the points in S∗.
So there are two points in S′ that are covered by the same center. In particular,
their distance is at most 2r∗. It follows that r ⩽ 2r∗.

See [?, §11.2] for more details.

École polytechnique 4 PA informatique


