Advanced algorithms

INF550 - Exercise sheet \#1 - Linear programming

September 21, 2022

Exercice 1 (Shortest path). Given a weighted directed graph $G=(V, E)$ with positive weights, and two distinguished vertices s and t, we consider the problem of finding the shortest path from s to t (where the length of a path is the sum of the weights of the edges of the path).

To each vertex v is associated a variable $d(v)$. Consider the following linear problem:

$$
\begin{aligned}
& \operatorname{maximize} d(t)-d(s) \\
& \text { subject to } \forall(u, v) \in E, d(v)-d(u) \leqslant c(u, v)
\end{aligned}
$$

(a) Show that for any assignment of the variables $d(v)$ in the feasible set, the difference $d(t)-d(s)$ is a lower bound on the length of the shortest path from s to t.
(b) Show that assigning to $d(v)$ the length of the shortest path from s to v is feasible.
(c) Conclude that the optimal value of the linear program is exactly the length of the shortest path from s to t.
(d) Write the dual linear program and interpret it.

Exercice 2 (Max-norm linear regression). A physicist measures a quantity theoretically given by a linear function $y(x)=a x+b$. The results are points $\left(x_{i}, y_{i}\right)$. He wants to find the best values for the coefficients a and b such that the vertical distance between the points $\left(x_{i}, y_{i}\right)$ and the line $y=a x+b$ is minimized.
(a) Write this optimization problem as a three-variable linear program.
(b) Write the dual problem.

Exercice 3 (Preemptive scheduling on parallel computers). A set of computational tasks $\{1, \ldots, n\}$ is to be executed simultaneously on m computers. Each task has a duration p_{i} and can be stopped and restarted arbitrarily on another computer. However, a task may run on a single computer at a time. A schedule is a plan describing which task will be executed on which computer at which time.
(a) Show that the duration of a schedule is at least $\max \left(\max _{1 \leqslant i \leqslant n} p_{i}, \frac{1}{m} \sum_{i=1}^{n} p_{i}\right)$.
(b) Show that there exists a schedule that achieves the bound and that it can be computed in $O(n)$ operations.
(c) Each task has now a time interval $\left[d_{i}, f_{i}\right]$ in which it must be performed. Write a linear system of constraints whose feasibility is equivalent to the existence of a schedule that runs all the tasks in the appropriate time intervals.
(d) Write an algorithm that computes a schedule obeying the time constraints and minimizing the termination time.

Exercice 4 (Min-cut and Ising model). Let $G=(V, E)$ be a nondirected weighted graph with positive weights $J_{i j}$. Each vertex i has an associated scalar h_{i}. We want to solve the following optimization problem:

$$
\begin{aligned}
& \text { maximize } \sum_{(i, j) \in E} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i \in V} h_{i} \sigma_{i} \\
& \text { such that } \sigma_{i} \in\{-1,1\} .
\end{aligned}
$$

Show that an optimal solution can be computed in polynomial time. (Hint: first assume that $h_{i}=0$ and use a reduction to Min-cut; then refine the reduction to take h_{i} into account.)

