## Advanced algorithms

Exercise sheet \#3 - Parametric complexity

October 5, 2022

Exercice 1 (Independent set for planar graphs). Recall the Independent set problem:
Input: A graph $G=(V, E)$; an integer $k$;
Queston: Is there a subset $S \subseteq V$ such that $\# S \geqslant k$ and for any $a, b \in S,\{a, b\}$ is not in $E$ ?
It is not known to be FPT with respect to $k$. However, we will show that it is FPT when restricted to planar graphs.
(a) Show that a planar graph with $n \geqslant 3$ vertices has at most $3 n-6$ edges. Hint: use Euler's formula for connected planar graphs \#vertices $+\#$ faces $=2+\#$ edges (which includes the outter face).
(b) Show that a planar graph has a vertex of degree at most 5 .
(c) Deduce a $O\left(6^{k} n\right)$-time algorithm for Independent set restricted to planar graph.

Exercice 2 (Covering points by lines). Consider the NP-complete problem Line cover:
Input: A set $P$ of points in the plane; an integer $k$;
Question: Is $P$ coverable by $k$ lines?
Show that instances of LINE COVER admit kernels of size $O\left(k^{2}\right)$. (And therefore, LINE COVER is FPT with respect to $k$.)

Exercice 3 (Kernel for Vertex cover). We aim at proving that Vertex cover can be solved with $O\left(k n+5^{k / 4} k^{3}\right)$ operations, where $k$ is the size of the cover and $n$ is the number of vertices of the input graph.
(a) Show that instances of Vertex cover have kernels of size $\leqslant k^{2}$. Hint: Consider points with large degree, if any.
(b) For any graph $G$, let $\Delta(G)$ be the maximum degree of a vertex of $G$. Show that Vertex COVER restricted to graphs with $\Delta(G) \leqslant 2$ is easily solvable.
(c) Use a branch and bound approach to show that VERTEX COVER is solvable in $O\left(1.5^{k}(n+m)\right)$ operations, where $n$ is the number of vertices and $m$ the number of edges.
(d) Conclude.

Exercice 4 (Hamming center problem (Pâle 2019)). A word of length $n$ on the alphabet $A$ is a sequence of $n$ elements of $A$. Let $u[i]$ denote the $i$ th letter of $u$, so that $u=u[1] \ldots u[n]$. Given two words $u$ and $v$ of length $n$, let $d(u, v)$ denote their Hamming distance. It is the number of places at which the two words are different: $d(u, v)=|\{i \in\{1, \ldots, n\} \mid u[i] \neq v[i]\}|$.

We consider the problem $d$-CENTER, inspired from error correcting codes questions:

## Problem $d$-center

Input: $k$ words $w_{1}, \ldots, w_{k}$, each of length $n$, and an integer $d$
Question: is there a word $u$ such that $d\left(u, w_{i}\right) \leqslant d$ for any $i=1, \ldots, k$ ?
To answer the problem $d$-CENTER we put the words in a $k \times n$ matrix with entries in $A$. A column $i$ is bad if there are two lines $h$ and $\ell$ such that $w_{h}[i] \neq w_{\ell}[i]$; the column is good otherwise.
(a) What can we say about the $d$-center problem when there are more than $k d$ bad columns?
(b) Assume that we are given a word $v$ and an integer $\ell$ such that the distance of $v$ to some $d$-center $u$ of $w_{1}, \ldots, w_{k}$ is at most $\ell$. Assume also that $v$ is not a $d$-center.
Show how to compute, in linear time, $d+1$ words $v_{1}, \ldots, v_{d+1}$ such that the distance of one of them to some $d$-center of $w_{1}, \ldots, w_{k}$ is at most $\ell-1$.
(c) Deduce an algorithm for solving $d$-CENTER with complexity $O\left(k n+k(d+1)^{d+1}\right)$.
(d) Is this problem FPT ?

