Cryptanalyse

Cours 5 - Cryptanalyse Différentielle

Maxime Bombar

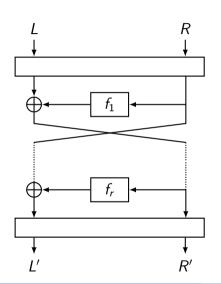
Mardi 01 Septembre 2024

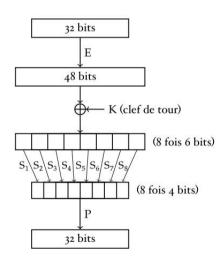
Rappels de la Semaine Dernière

Chiffrement par blocs

- Modes d'opération pour chiffrer tout un message.
- Attaque de Vaudeney sur le mode CBC : Attention au padding.
- Modes modernes assurent aussi l'intégrité.

Schémas de Feistel (e.g., DES)





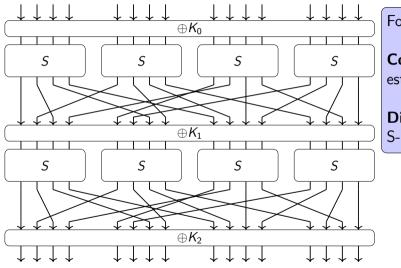
Faiblesse des fonctions de tour

V. Rijmen, B. Preneel (1997)

Utiliser des fonctions de tour non surjectives peut-être exploité pour monter des attaques.

Idée : Utiliser des fonctions booléennes **bijectives** $\mathbb{F}_2^n \to \mathbb{F}_2^n$.

Réseaux de Substitutions-Permutations (SPN)



Fonctions de tour bijectives :

Confusion : Chaque S-box est une bijection **non linéaire**.

Diffusion : Les sorties des S-box sont permutées.

Exemple : AES (Daemen, Rijmen)

Programme des prochaines séances

Aujourd'hui:

Cryptanalyse différentielle

08 Octobre:

Cryptanalyse linéaire

15 Octobre:

Présentation des stages (13h-14h30)

25 et 23 Octobre:

Double Séance Cryptanalyse Algébrique

Attaques statistiques

Des points communs

Programme des prochaines séances

Aujourd'hui:

Cryptanalyse différentielle

08 Octobre:

Cryptanalyse linéaire

15 Octobre:

Présentation des stages (13h-14h30)

25 et 23 Octobre:

Double Séance Cryptanalyse Algébrique Séance pour digérer les deux précédentes Probablement **fonctions de hachages**.

Décaler la séance? TD uniquement?

Programme des prochaines séances

Aujourd'hui:

Cryptanalyse différentielle

08 Octobre:

Cryptanalyse linéaire

15 Octobre:

Présentation des stages (13h-14h30)

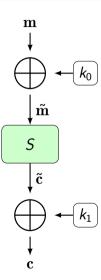
25 et 23 Octobre:

Double Séance Cryptanalyse Algébrique Rattrappe séance Carte à Puces du 5 Novembre.

Attaques Algébriques :

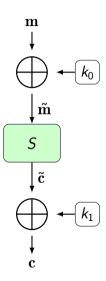
- Exploite la structure du chiffrement
- Résolution de systèmes polynomiaux
- Bases de Gröbner

Différentielles



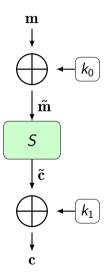
Hypothèse : Attaque par clairs connus. On connaît des paires (\mathbf{m}, \mathbf{c}) .

Imaginez que l'on connaisse en plus $\tilde{\mathbf{c}}$.



Hypothèse : Attaque par clairs connus. On connaît des paires (m, c).

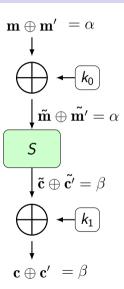
Imaginez que l'on connaisse en plus $\tilde{\mathbf{c}}$. On pourrait en déduire k_1 , puis tout le reste.



Hypothèse : Attaque par clairs connus. On connaît des paires (\mathbf{m}, \mathbf{c}) .

Imaginez que l'on connaisse en plus $\tilde{\mathbf{c}}$. On pourrait en déduire k_1 , puis tout le reste.

Problème : Avec k_0 clé uniforme, et S bijective, $\tilde{\mathbf{c}}$ est **uniformément distribué**.



Hypothèse : Attaque par clairs connus. On connaît des paires (\mathbf{m}, \mathbf{c}) .

Imaginez que l'on connaisse en plus $\tilde{\mathbf{c}}$. On pourrait en déduire k_1 , puis tout le reste.

Problème : Avec k_0 clé uniforme, et S bijective, $\tilde{\mathbf{c}}$ est **uniformément distribué**.

 $\mathsf{Id\acute{e}}: (\mathbf{m} \oplus k_0) \oplus (\mathbf{m}' \oplus k_0) = \mathbf{m} \oplus \mathbf{m}'$

Cryptanalyse Différentielle

- Attaque par clairs choisis.
- Formalisée par Eli Biham et Adi Shamir en 1990 pour la cryptanalyse de DES.
- En partie connue par IBM et NSA dès les années 1970 (Coppersmith 1994).
- Aujourd'hui, l'un des grands principes cryptanalytiques pour guider design et attaques.

Objectif

- (1) Prendre deux messages \mathbf{m} et \mathbf{m} avec $\Delta \mathbf{m} \stackrel{\text{def}}{=} \mathbf{m} \oplus \mathbf{m}'$ donnée.
- (2) Prédire la valeur $\Delta \mathbf{c} = \mathbf{c} \oplus \mathbf{c}'$.
- (3) En déduire des informations sur la clé secrète.

Quelques formalités

Différence

La **différence** entre deux éléments \mathbf{x}, \mathbf{x}' d'un groupe (G, \otimes) est $\Delta \mathbf{x} \stackrel{\text{def}}{=} \mathbf{x} \otimes (\mathbf{x}')^{-1}$.

En pratique

On se contentera souvent de $G = \mathbb{F}_2^n$, et \otimes sera alors l'addition (*i.e.*, le XOR bit à bit) : $\Delta \mathbf{x} = \mathbf{m} + \mathbf{m}'$, mais cette technique pourrait s'appliquer plus généralement (par exemple $G = (\mathbb{F}_q^n, +)$).

Dérivée d'une fonction booléenne

Soit $\alpha \in \mathbb{F}_2^n$ et $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$. La (fonction booléenne) **dérivée** de f en direction α est

$$\Delta_{\alpha} f(\cdot) \stackrel{\text{def}}{=} f(\cdot + \alpha) + f(\cdot).$$

Principes de la cryptanalyse différentielle

- On choisit des couples de clairs \mathbf{x}, \mathbf{x}' de différence $\alpha \stackrel{\text{def}}{=} \Delta \mathbf{x}$ fixée.
- On considère leurs images $\mathbf{y} = f(\mathbf{x})$ et $\mathbf{y}' = f(\mathbf{x}')$ par une fonction booléenne $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$.
- On veut estimer $\beta \stackrel{\text{def}}{=} \Delta y = f(\mathbf{x} + \alpha) + f(\mathbf{x}) = \Delta_{\alpha}(f)(\mathbf{x})$.

- Un tel couple (α, β) est souvent noté (α → β) et est appellé une différentielle (possible) de f.
- La cryptanalyse différentielle cherche à exploiter l'existence de différentielles $(\alpha \mapsto \beta)$ qui apparaissent avec grosse probabilité.

Remarques importantes

Pour une fonction booléenne f linéaire, alors

$$(\Delta_{\alpha} f)(\mathbf{x}) = f(\mathbf{x} + \alpha) + f(\mathbf{x}) = f(\alpha)$$

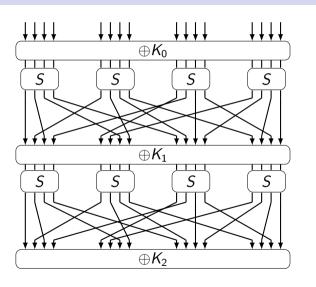
Pour une fonction linéaire, les seules différentielles possibles sont les $(\alpha \mapsto f(\alpha))$.

Pour une fonction booléenne affine $f = \ell + K_0$ où ℓ est linéaire, alors

$$(\Delta_{\alpha} f)(\mathbf{x}) = \ell(\alpha)$$

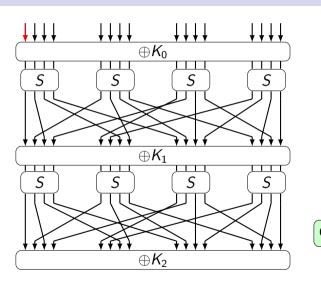
Une addition de clé ne change pas les différentielles.

Un exemple



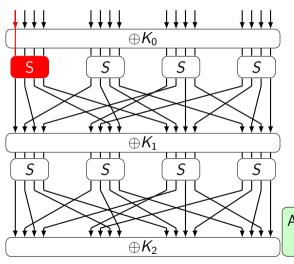
	00	01	10	11
00	2	0	4	3
01	9	5	6	7
10	1	d	е	f
11	а	8	C	b

Exemple : S(9) = S(1001) = d



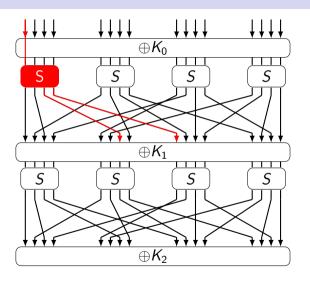
	00	01	10	11
00	2	0	4	3
01	9	5	6	7
10	1	d	е	f
11	a	8	С	b

On active la différentielle $\alpha = (8, 0, 0, 0)$



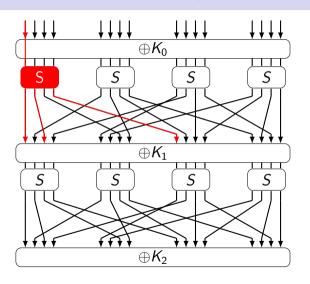
	00	01	10	11
00	2	0	4	3
01	9	5	6	7
10	1	d	е	f
11	a	8	С	b

Addition de clé ne change pas la différentielle. On active la première boîte S.



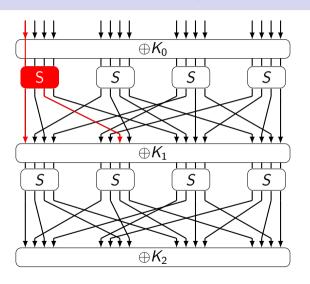
	00	01	10	11
00	2	0	4	3
01	9	5	6	7
10	1	d	е	f
11	a	8	С	b

$$2 \oplus 1 = 3 = (0,0,1,1)$$
$$(\Delta_{(1,0,0,0)}S)(\mathbf{x}) \in \{3,\}$$



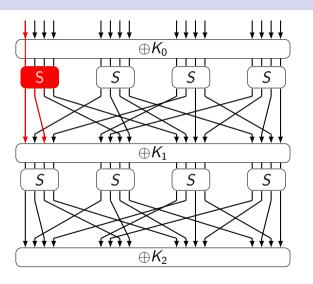
	00	01	10	11
00	2	0	4	3
01	9 5		6	7
10	1	d	е	f
11	a	8	С	b

$$oxed{0 \oplus \mathrm{d} = \mathrm{d} = (1,1,0,1)} \ (\Delta_{(1,0,0,0)}S)(\mathbf{x}) \in \{3,\mathrm{d},\}$$



	00	01	10	11
00	2	0	4	3
01	9	5	6	7
10	1	1 d		f
11	a	8	c	b

$$oxed{4 \oplus \mathrm{e} = \mathrm{a} = (1,0,1,0)} \ (\Delta_{(1,0,0,0)}S)(\mathbf{x}) \in \{3,\mathrm{d},\mathrm{a},\}$$



	00	01	10	11	
00	2	0	4	3	
01	9	5	6	7	
10	1	d	е	f	
11	a	8	С	b	

$$3 \oplus f = c = (1, 1, 0, 0)$$
 $(\Delta_{(1,0,0,0)}S)(x) \in \{3, d, a, c\}$

Nombre de solutions et Uniformité

Soit $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ une fonction booléenne, et $(\alpha \mapsto \beta)$ une différentielle. On note

$$\delta_f(\alpha,\beta) \stackrel{\text{def}}{=} \{ \mathbf{x} \in \mathbb{F}_2^n \mid (\Delta_{\alpha} f)(\mathbf{x}) = \beta \}.$$

- Le tableau représentant $\#\delta_f(\alpha,\beta)$ pour toute $(\alpha \mapsto \beta)$ est appelé **Difference Distribution Table** (DDT).
- C'est une table de taille $2^n \times 2^n$.
- La valeur $\delta_f \stackrel{\text{def}}{=} \max_{\alpha \neq 0, \beta} \# \delta_f(\alpha, \beta)$ est appelée **Uniformité différentielle** de f.

Remarque : On a toujours $\delta_f(0,0) = \mathbb{F}_2^n$. La différentielle $(0 \mapsto 0)$ est appelée différentielle triviale.

Probabilité d'une différentielle

La probabilité $\pi_f(\alpha, \beta)$ d'une différentielle $(\alpha \mapsto \beta)$ est la probabilité qu'elle apparaisse sous une entrée uniforme \mathbf{x} :

$$\pi_f(\alpha,\beta) = \mathbb{P}_{\mathbf{x}}(f(\mathbf{x}+\alpha)+f(\mathbf{x})=\beta) = \frac{\#\delta_f(\alpha,\beta)}{2^n} \leqslant \frac{\delta_f}{2^n} \text{ pour } \alpha \neq 0.$$

- En cryptanalyse, on va chercher $(\alpha \mapsto \beta)$ offrant un **gros biais**.
- La résistance d'une S-box à la cryptanalyse différentielle est d'autant meilleure que son uniformité différentielle est faible.

DDT de la Sbox précédente

$\alpha \setminus \beta$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	4	4	-	-	-	-	4	-	-	-	-	4	-	-	-
2	-	-	4	4	-	-	4	-	-	-	-	-	-	-	-	4
3	-	4	-	4	4	-	-	-	-	-	-	-	-	-	4	-
4	-	-	4	-	4	4	-	-	-	-	-	4	-	-	-	-
5	-	-	-	4	-	4	-	4	-	4	-	-	-	-	-	-
6	-	-	-	-	4	-	4	4	-	-	-	-	-	4	-	-
7	-	4	-	-	-	4	4	-	-	-	4	-	-	-	-	-
8	-	-	-	4	-	-	-	-	-	-	4	-	4	4	-	-
9	-	4	-	-	-	-	-	-	-	-	-	4	-	4	-	4
a	-	-	-	-	-	4	-	-	-	-	-	-	4	-	4	4
b	-	-	4	-	-	-	-	-	-	4	-	-	-	4	4	-
c	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-	-
d	-	-	-	-	4	-	-	-	-	4	4	-	-	-	-	4
e	-	-	-	-	-	-	-	4	-	-	4	4	-	-	4	-
f	-	-	-	-	-	-	4	-	-	4	-	4	4	-	-	-

- La différentielle ($c \mapsto 8$) arrive avec probabilité 1.
- $(8 \mapsto a)$ et $(a \mapsto c)$ arrivent toutes deux avec probabilité 1/4.

Bonnes propriétés de confusion : Fonctions APN

(Nyberg, Knudsen 1993)

Soit $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ une fonction booléenne en n variables. Alors son uniformité différentielle vérifie $\delta(f) \geqslant 2$. Une fonction qui atteint cette borne est appelée *Almost Perfectly Nonlinear* (APN).

Preuve : $\delta(\alpha, \beta)$ est nécessairement pair, puisque si \mathbf{x} vérifie $f(\mathbf{x} + \alpha) + f(\mathbf{x}) = \beta$, alors

$$f((\mathbf{x} + \alpha) + \alpha) + f(\mathbf{x} + \alpha) = f(\mathbf{x}) + f(\mathbf{x} + \alpha) = \beta.$$

Ainsi, pour toute solution x, alors $x + \alpha$ est aussi solution.

La conjecture APN

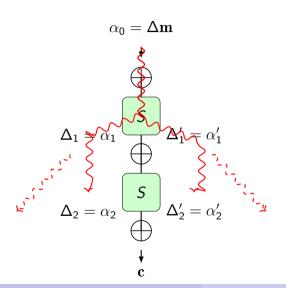
On ne connaît pas de **bijections** APN pour n pair, sauf pour n = 6.

Il était conjecturé pendant longtemps qu'il n'existait pas de bijections APN à un nombre pair de variables. La solution pour n=6 date de 2009 (Dillon).

Les S-box dans l'AES sont des bijections $\mathbb{F}_2^8 \to \mathbb{F}_2^8$ qui vérifient $\delta(S) = 4$.

Gérer plusieurs tours

Multiplicité des différentielles



- Si trouver la ou les différentielles optimales pour les petites Sbox est facile, lorsque l'on agit sur tout un bloc cela devient très vite impossible.
- Il faut aussi tenir compte des couches assurant la **diffusion**.
- On va alors plutôt chercher une **borne inférieure** sur la probabilités d'une différentielle globale, en suivant un/des chemins particuliers.

Trace Différentielle

Définition : Soit E un chiffrement à r tours. Une **trace différentielle** (*Differential characteristic*) est un (r+1)-uplet $(\alpha_0,\ldots,\alpha_r)$ tel que $(\alpha_i\mapsto\alpha_{i+1})$ est une différentielle possible pour le tour i, et α_0 est la différence entre deux messages initiaux.

Si la fonction de tour était **linéaire**, alors il n'existerait qu'une seule trace différentielle issue d'une différence initiale α_0 :

$$\alpha_0 \mapsto F(\alpha_0) \mapsto F(F(\alpha_0)) \mapsto \cdots \mapsto F^r(\alpha_0).$$

Pour la sécurité, on veut maximiser le nombre de traces différentielles.

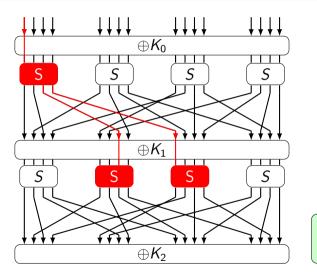
Probabilité d'une trace

Sous l'hypothèse raisonnable que les tours sont indépendants, la probabilité d'une trace est simplement le produit des probabilités de chaque différentielle intermédiaire :

$$\pi(\alpha_0,\ldots,\alpha_r)=\prod_{i=0}^{r-1}\pi_f(\alpha_i,\alpha_{i+1})$$

Remarque : La probabilité des traces ne dépend **que** de l'algorithme de chiffrement, et pas des données secrètes \Longrightarrow précalculable.

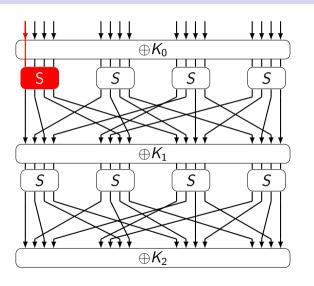
Retour de notre exemple



	00	01	10	11	
00	2	0	4	3	
01	9	5	6	7	
10	1	d	е	f	
11	a	8	c	b	

La différentielle $(8,0,0,0) \mapsto (3,0,0,0)$ active 2 Sbox au tour 2.

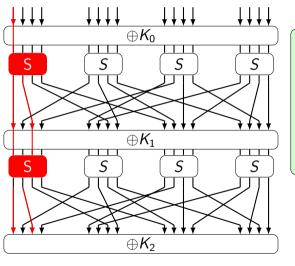
Retour de notre exemple



	00	01	10	11
00	2	0	4	3
01	9	5	6	7
10	1	d	е	f
11	a	8	c	b

Quel est le nombre **minimal** de Sbox activées au tour 2?

Retour de notre exemple



$$(8,0,0,0)\mapsto (c,0,0,0)\mapsto (a,0,0,0)\mapsto \cdots$$
 n'active qu'1 seule Sbox

$$(8,0,0,0) \mapsto (c,0,0,0) \mapsto (a,0,0,0) \mapsto (c,0,0,0) \mapsto (a,0,0,0) \text{ est un}$$
cycle possible, sur 2 tours
avec probabilité $\geqslant 2^{-2} \times 2^{-2} = 2^{-4}$.

Mauvaise propriété de diffusion.

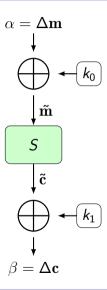
Assurer une bonne diffusion

Nombre de branchement (Branch Number), Daemen 1995

- Rappel : La diffusion est assurée par les couches linéaires.
- Définition : Le nombre de branchement B d'un chiffrement par blocs est le nombre minimal de Sbox actives sur deux tours consécutifs.
- Se généralise à plus de tours.
- Dans l'exemple, on a $\mathcal{B}=2$.
- Il existe une borne supérieure simple : $\mathcal{B} \leqslant 1+$ nombre de Sbox par tour.
- Dans l'AES on a 4 Sbox sur 32 bits (composition de SubBytes et ShiftRows).
- La diffusion est assurée par MixColumns.
- On peut vérifier que $\mathcal{B}=5$, et après 4 tours $\mathcal{B}=25$ qui est optimal.

Exploiter les Différentielles

Exemple avec un seul tour



- (1) On a trouvé une bonne différentielle $(\alpha \to \beta)$ avec une probabilité p.
- (2) On va générer N clairs \mathbf{m} uniformes et calculer $\mathbf{m}' = \mathbf{m} \oplus \alpha$.
- (3) On appelle notre oracle de chiffrement pour obtenir des couples de chiffrés (c, c').
- (4) Une paire $((\mathbf{m}, \mathbf{m}'), (\mathbf{c}, \mathbf{c}'))$ est bonne si $\Delta \mathbf{c} = \beta$. Il y en a $\approx pN$ pour N grand.
- (5) On connaît les $\delta(\alpha, \beta) = p2^n$ paires $((\tilde{\mathbf{m}}, \tilde{\mathbf{m}}'), (\tilde{\mathbf{c}}, \tilde{\mathbf{c}}'))$ intermédiaires ayant la différentielle $(\alpha \to \beta)$.
- (6) k_0 doit être de la forme $\mathbf{m} \oplus \tilde{\mathbf{m}}$ pour l'une de ces paires intermédiaires.

Comparaison avec la recherche exhaustive

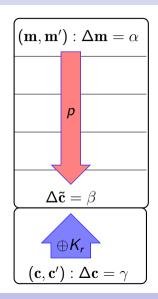
Recherche exhaustive

- 1 clair connu (m, c).
- Clé = (k_0, k_1) , espace de taille 2^{2n} .
- En réalité, k_0 et k_1 sont liés $\rightarrow 2^n$.

Cryptanalyse différentielle

- N clairs choisis pour trouver une bonne paire.
- Beaucoup de mauvaises paires $(\Delta \mathbf{m} = \alpha \text{ mais } \Delta \mathbf{c} \neq \beta).$
- On recherche k₀ dans un espace de taille p2ⁿ → on a décimé l'espace des clés possibles.
- Si p est grand, il est **facile** de trouver une différentielle $(\alpha \mapsto \beta)$ mais espace de recherche plus gros.
- $N = \Theta(\frac{1}{p})$. En pratique $N \approx 3 \times \frac{1}{p}$.

Attaque sur le dernier tour



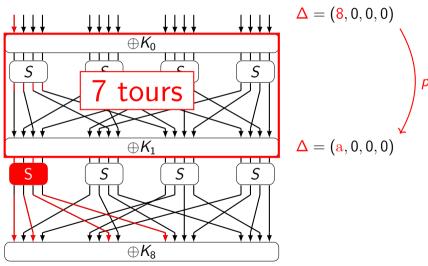
- On suppose avoir une trace différentielle $(\alpha \mapsto \beta)$ avec probabilité $p >> 2^{-|\text{taille de block}|}$.
- On appelle l'oracle de chiffrement sur $N = \Theta(1/p)$ clairs de différence $\Delta \mathbf{m} = \alpha$.
- Pour chaque clé K_r possible (recherche exhaustive) on déchiffre 1 tour et on augmente un compteur si on observe $\Delta \tilde{\mathbf{c}} = \beta$.
- Vote majoritaire pour deviner la bonne clé K_r .
- Là encore, beaucoup de faux positifs (on peut observer $\Delta \tilde{\mathbf{c}} = \beta$ par chance).

On continue avec notre exemple : Encore la DDT

$\alpha \setminus \beta$	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f	
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1	-	4	4	-	-	-	-	4	-	-	-	-	4	-	-	-	
2	-	-	4	4	-	-	4	-	-	-	-	-	-	-	-	4	
3	-	4	-	4	4	-	-	-	-	-	-	-	-	-	4	-	
4	-	-	4	-	4	4	-	-	-	-	-	4	-	-	-	-	
5	-	-	-	4	-	4	-	4	-	4	-	-	-	-	-	-	
6	-	-	-	-	4	-	4	4	-	-	-	-	-	4	-	-	
7	-	4	-	-	-	4	4	-	-	-	4	-	-	-	-	-	
8	-	-	-	4	-	-	-	-	-	-	4	-	4	4	-	-	
9	-	4	-	-	-	-	-	-	-	-	-	4	-	4	-	4	
a	-	-	-	-	-	4	-	-	-	-	-	-	4	-	4	4	
b	-	-	4	-	-	-	-	-	-	4	-	-	-	4	4	-	
c	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-	-	
d	-	-	-	-	4	-	-	-	-	4	4	-	-	-	-	4	
e	-	-	-	-	-	-	-	4	-	-	4	4	-	-	4	-	
f	-	-	-	-	-	-	4	-	-	4	-	4	4	-	-	-	

- La différentielle (8 \mapsto c) a probabilité 1/4.
- $(c,0,0,0) \mapsto (a,0,0,0)$ par la permutation, et n'active qu'une seule Sbox.
- Après 2 Sbox, la trace $(8 \mapsto c)$ a probabilité $\geqslant 2^{-4}$.
- Après 7 tours complets, la trace $(8 \mapsto a)$ a probabilité $\geqslant 2^{-14}$.

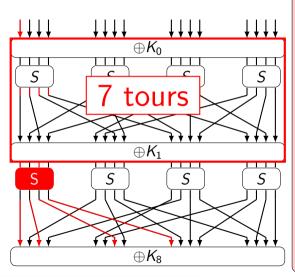
On continue l'exemple avec 8 tours



$$\Delta=(8,0,0,0)$$

$$p\geqslant 2^{-14}$$

Complexité



- On a besoin de $\approx 3 \times \frac{1}{p} = 75\%$ de l'espace total!
- Remarque : On peut en réalité filtrer les paires de chiffrés qui ont une différence non nulle sur les bits non actifs.
- On peut retrouver toutes les clés K_8 qui ont les bon bits activés : Beaucoup moins cher et beaucoup moins de données.
- Brute-force les 12 bits restants ou nouvelle trace.

Pour aller plus loin

- Il existe des outils pour aider à automatiser ces attaques statistiques.
 Particulièrement utile pour les designers, mais aussi pour les cryptanalystes. Par exemple Mixed Integer Linear Programming (MILP).
- La cryptanalyse différentielle admet de nombreuses variantes : Différentielles impossibles, cryptanalyse boomerang, différentielles d'ordre supérieur.

Acknowledgement

Ces transparents sont très largement inspirés du cours donné par Maria Eichlseder en 2021 https://www.youtube.com/watch?v=GQX8W8zKf2Q

Les exemples étant extrêmement bien choisis.