Cryptanalyse

Cours 2 - Chiffrement par Flot (Stream Ciphers)

Maxime Bombar

09 Septembre 2025

Introduction

Rappel de la semaine dernière : One-Time-Pad

- Chiffrement sûr au sens de la théorie de l'information (Perfect secrecy)
- Clés nécessitent une grosse entropie :
 e.g. clés aléatoires et aussi longues que le message
- Pas adaptés pour tous les contextes.

Mais les adversaires ont des ressources bornées.

→ Chiffrement par flot : Clé pseudo-aléatoire.

Rappels sur les chiffrements par flots

Un **chiffrement par flots** (additif et synchrone) est obtenu en ajoutant au message, une suite chiffrante **pseudoaléatoire** (appelée aussi *keystream*) générée indépendamment :

$$\forall k, \quad c_k = m_k + s_k$$

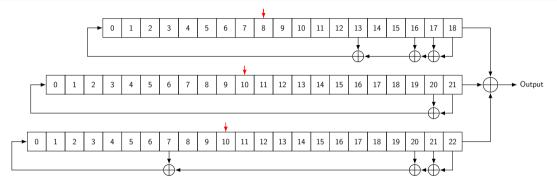
La suite chiffrante (s_k) est obtenue à partir d'une graîne courte, et d'un **générateur pseudo-aléatoire cryptographique** (CPRG).

Avantages des Chiffrements par Flot

- PRG implantés en hardware.
- En général, extrêmement rapides.
- Peu gourmands en énergie.
- → Utilisés sur des terminaux aux ressources limitées.
 - WEP (Wifi, norme IEEE 802.11, 1999) : Chiffrement RC4.
 - Bluetooth : Chiffrement E0.
 - 2G/3G : Chiffrement A5/1.
 - 4G/5G : Chiffrement SNOW.
 - Communications radio par l'armée (utilisation historique).

Lecture 2 09 Septembre 2025

Exemple : Chiffrement par Flot A5/1 (Cassé)



Attaques extrêmement efficaces (quelques secondes d'écoute du traffic, quelques minutes de temps de calcul).

Lecture 2 09 Septembre 2025

Déclin du Chiffrement par Flot (1970's – 2000's)

- Télécommunications : Analogique o Découpage par paquets.
- DES (Data Encryption Standard), standardisé en 1976.
- Historiquement, sécurité par l'obscurantisme (contraire à Kirchhoff!).
- Cryptanalyse spécifique des chiffrements par flots.

- RC4 rétroingéniéré en 1994, spécifications sur une mailing list : Cipherpunks.
- WEP utilise RC4, mais en pire \rightarrow Surnommé Weak Encryption Protocol (cryptanalyse complète dès 2001).
- https://github.com/aircrack-ng/aircrack-ng/

Asiacrypt 2004

Adi Shamir Computer Science Dept The Weizmann Institute Israel

ASIACRYPT 2004

Regain d'attractivité?

- Compétition eSTREAM (2004-2008) \rightarrow 7 chiffrements, dont Salsa20.
- Renaissance des besoins « ressources limités » et « sobriété »

- ChaCha20 : Variante de Salsa20 avec de meilleures performances.
- Fait partie de TLS1.3. Utilisé notamment dans **DNS** over **TLS**.

kdig +tls u-bordeaux.fr @80.67.169.12 // DNS de la FDN, FAI Associatif.

Choix du PRG

La sécurité d'un chiffrement par flots est directement reliée au caractère pseudo-aléatoire du PRG choisi.

Attention au choix du PRG! (cf soutenances de la semaine dernière).

Linear Feedback Shift Registers

Linear Feedback Shift Registers (LFSR)

Définition

Un LFSR de longueur ℓ est une machine à états finis qui produit une suite $(s_t)_{t\in\mathbb{N}}\in\mathbb{F}_q^\mathbb{N}$ satisfaisant une relation de récurrence linéaire d'ordre ℓ sur \mathbb{F}_q :

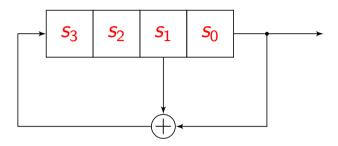
$$s_{t+\ell} = c_1 s_{t+\ell-1} + \cdots + c_\ell s_t, \quad \forall t \geqslant 0.$$

où les coefficients $c_1, \ldots, c_\ell \in \mathbb{F}_q$ sont fixés.

Proposition

Toute suite récurrente linéaire d'ordre ℓ est produite par un LFSR de longueur ℓ .

Exemple: LFSR binaire

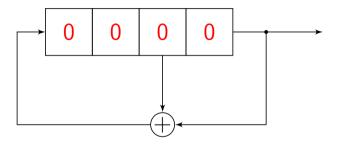


LFSR binaire avec coefficients $(c_1, c_2, c_3, c_4) = (0, 0, 1, 1)$

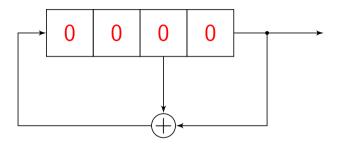
Implémente la récurrence $s_{t+4} = s_{t+1} + s_t$

Lecture 2 09 Septembre 2025

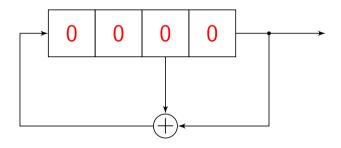
Exemple : LFSR binaire



Exemple : LFSR binaire



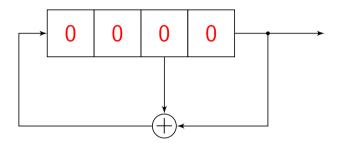
Exemple: LFSR binaire



000

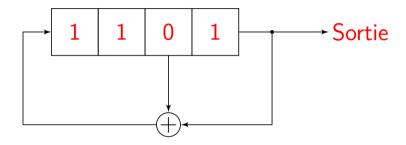
Il faut éliminer l'état 0.

Exemple: LFSR binaire

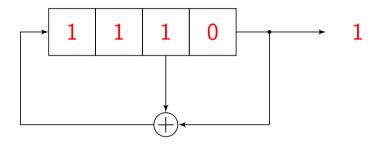


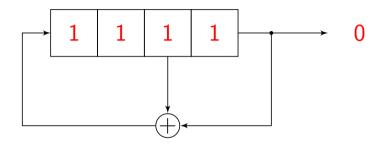
0000 . . .

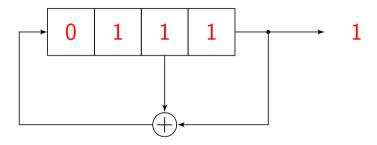
Il faut éliminer l'état 0.

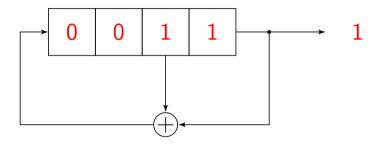


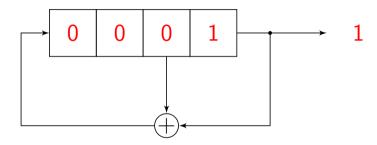
État Initial.

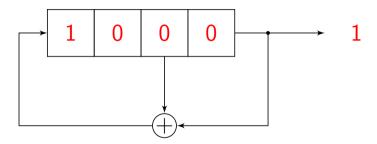


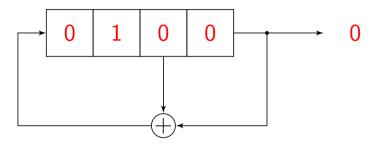


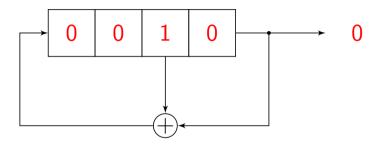


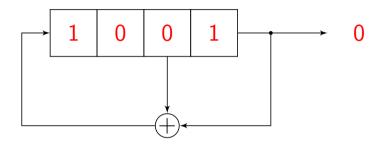


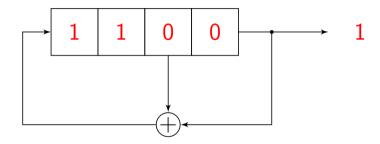


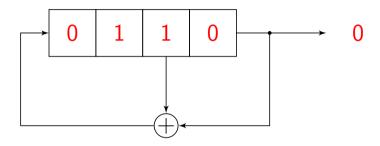


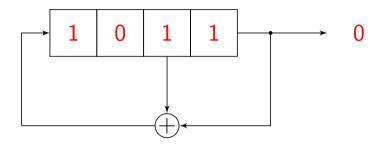


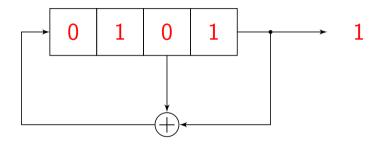


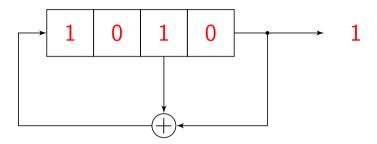


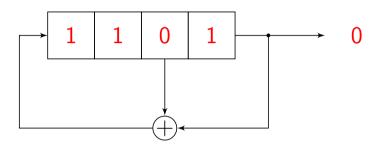












$101111000100110\cdots$

La suite produite est périodique, de période $15 = 2^4 - 1$.

Lecture 2 09 Septembre 2025

Polynôme de Rétroaction

On représente souvent les coefficients d'un LFSR sous la forme d'un polynôme appelé polynôme de rétroaction du LFSR, défini par

$$P(X) \stackrel{\mathrm{def}}{=} 1 - \sum_{i=1}^{\ell} c_i X^i = -\sum_{i=0}^{\ell} c_i X^i \in \mathbb{F}_q[X]$$
 avec la convention $c_0 = -1$.

Un LFSR de longueur ℓ est dit non-singulier si $c_{\ell} \neq 0$, *i.e.* si son polynôme de rétroaction est de degré ℓ .

Exemple

Le LFSR précédent a pour polynôme de rétroaction

$$P(X) = 1 + X^3 + X^4 \in \mathbb{F}_2[X]$$

Lecture 2 09 Septembre 2025

Une remarque importante

Soit ℓ la taille du registre. L'état interne peut alors prendre **au plus** 2^{ℓ} valeurs différentes, et la suite (s_t) est donc **ultimement périodique** de période au plus 2^{ℓ} .

On va chercher à produire des suites chiffrantes de période maximale.

Propriétés d'une suite produite par un LFSR

Séries Formelles

L'espace des suites $\mathbb{F}_q^{\mathbb{N}}$ est muni d'une structure de \mathbb{F}_q -algèbre (de dimension infinie) :

$$(a_t)\odot(b_t)\stackrel{\mathrm{def}}{=}(c_t)$$

οù

$$c_t \stackrel{\mathrm{def}}{=} \sum_{k=0}^t a_k b_{t-k}.$$

Cette structure est appelée algèbre des **séries formelles** à une indéterminée sur \mathbb{F}_q et est dénotée $\mathbb{F}_q[[X]]$. Une suite (a_t) vue comme élément de $\mathbb{F}_q[[X]]$ est notée

$$\sum_{t\geqslant 0}a_tX^n$$

aussi appelée série génératrice de (a_t) .

Quelques Propriétés et Exemples

- $\mathbb{F}_q[[X]]$ est une algèbre commutative, intègre, de dimension infinie sur \mathbb{F}_q .
- $\mathbb{F}_q[[X]]$ contient l'algèbre des polynômes $\mathbb{F}_q[X]$.
- $A=\sum_{i=1}^n a_i X^n \in \mathbb{F}_q[[X]]$ est inversible si et seulement si $a_0 \neq 0$.
- $\mathbb{F}_a[[X]]$ n'est pas un corps.
- $1 + X \in \mathbb{F}_q[X] \subset \mathbb{F}_q[[X]]$ est inversible, d'inverse

$$\frac{1}{1+X} \stackrel{\text{def}}{=} \sum_{t=0}^{\infty} (-1)^n X^n$$

• X n'est pas inversible dans $\mathbb{F}_a[[X]]$.

Longueur d'une suite LFSR

Pour $(s_t) \in \mathbb{F}_q^{\mathbb{N}}$, on note $S(X) \stackrel{\mathrm{def}}{=} \sum_{t=0}^{\infty} s_t X^n$ sa serie formelle associée.

Théorème

Une suite (s_t) est produite par un LFSR de longueur ℓ et de polynôme de rétroaction P si et seulement si il existe un polynôme Q(X) avec deg $Q < \ell$ et tel que

$$S(X) = \frac{Q(X)}{P(X)}.$$

De plus, Q(X) est entièrement déterminé par les coefficients de P et par l'état initial :

$$Q(X) = -\sum_{k=0}^{\ell-1} X^k \sum_{i=0}^{k} c_i s_{k-i}$$

Lecture 2 09 Septembre 2025

Preuve

On rappelle la définition de P

$$P(X) = 1 - \sum_{i=1}^{\ell} c_i X^i = -\sum_{i=0}^{\ell} c_i X^i = \sum_{i=0}^{\infty} (-c_i \mathbb{1}_{i \leqslant \ell}) X^i$$

Alors,

$$P(X) \cdot S(X) = \sum_{k=0}^{\infty} X^k \sum_{i=0}^{k} (-c_i \mathbb{1}_{i \leqslant \ell}) s_{k-i}$$

On découpe la somme selon que $k < \ell$ ou $k \geqslant \ell$:

$$P(X) \cdot S(X) = \underbrace{-\sum_{k=0}^{\ell-1} X^k \sum_{i=0}^k c_i s_{k-i}}_{\stackrel{\text{def}}{=} Q(X) \in \mathbb{F}_q[X]} + \sum_{k \geqslant \ell} X^k \sum_{i=0}^{\ell} -c_i s_{k-i}.$$

re 2 09 Septembre 2025

Preuve (Cont'd)

Il suffit de prouver que les coefficients des termes d'ordre supérieurs à ℓ sont tous nuls. Pour cela, on écrit $k=t+\ell$ avec $t\geqslant 0$:

$$\sum_{k \geqslant \ell} X^k \sum_{i=0}^{\ell} -c_i s_{k-i} = \sum_{t=0}^{\infty} X^{t+\ell} \sum_{i=0}^{\ell} -c_i s_{t+\ell-i}$$

i.e.

$$\sum_{k\geqslant \ell} X^k \sum_{i=0}^\ell -c_i s_{k-i} = \sum_{t=0}^\infty X^{t+\ell} \left(\underbrace{s_{t+\ell} - (c_1 s_{t+\ell-1} + \cdots + c_\ell s_t)}_{=0 \text{ (relation de récurrence)}}\right)$$

Conséquence 1 : Sparsification

Proposition

Toute suite produite par un LFSR de rétroaction P peut aussi être produite par tout LFSR de rétroaction un multiple non nul de P.

Exemple : Soit (s_t) une suite binaire vérifiant

$$s_{t+6} = s_{t+4} + s_{t+3} + s_{t+1} + s_t, \quad \forall t \geqslant 6.$$

Son polynôme de rétroaction est donc $P(X) = 1 + X^2 + X^3 + X^5 + X^6$. On vérifie que cette suite vérifie aussi $s_{t+8} = s_{t+7} + s_t$, puisque

$$1 + X + X^8 = (1 + X + X^2)P(X).$$

Si un multiple de P est moins dense, la récurrence est moins coûteuse à implémenter!

Lecture 2 09 Septembre 2025

Conséquence 2 : Minimisation

Soit $\mathbf{s} \stackrel{\text{def}}{=} (s_t)_{t \in \mathbb{N}} \in \mathbb{F}_q^{\mathbb{N}}$ une suite récurrente linéaire non nulle.

Il existe un unique polynôme P_0 de terme constant 1 tel que la série génératrice S(X) soit de la forme

$$S(X) = \sum_{t\geqslant 0} s_t X^t = \frac{Q_0(X)}{P_0(X)}$$

où $gcd(P_0, Q_0) = 1$. Le degré de P_0 est alors **minimal** parmi celui de tous les polynômes de rétroaction générant la même suite (s_t) .

Exercice

Soit s la suite définie par l'état initial $(s_0, \ldots, s_9) = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1)$ et de polynôme de rétroaction $P(X) = 1 + X + X^3 + X^4 + X^7 + X^{10}$.

Vérifier que s est en réalité générée par un LFSR de longueur 3.

Lecture 2 09 Septembre 2025

Complexité Linéaire d'une Suite

Définition

La **complexité linéaire** $\Lambda(s)$ d'une suite $(s_t)_{t\in\mathbb{N}}$ est :

- 0 si s est la suite nulle.
- le degré de son polynôme de rétroaction minimal s'il existe.
- ∞ sinon.

Lorsque le polynôme de rétroaction P est irréductible, la complexité linéaire est **exactement** le degré de P. Pour les applications cryptographiques, on choisit donc toujours P irréductible.

Soit (s_t) une suite récurrente linéaire de complexité linéaire Λ . Il suffit de 2Λ termes consécutifs pour déterminer entièrement la suite.

Lecture 2 09 Septembre 2025

Période d'un LFSR

Soit $\mathbf{s} \stackrel{\text{def}}{=} (s_t)_{t \in \mathbb{N}} \in \mathbb{F}_q^{\mathbb{N}}$ une suite récurrente linéaire, et soit P_0 son polynôme de rétroaction **minimal**.

- (\mathbf{s}_t) est périodique, de période $T \leqslant 2^{\deg P_0} 1$.
- La plus petite période est égale au plus petit entier e tel que P(X) divise $X^e + 1$.
- En particulier, la période est **maximale**, égale à $2^{\deg P_0} 1$ si et seulement si P_0 est un polynôme **primitif**.

Exemple

Le polynôme de rétroaction du LFSR du début était $P(X) = 1 + X^3 + X^4$ qui est bien primitif. On retrouve que sa période est bien de $2^4 - 1 = 15$.

Lecture 2 09 Septembre 2025

LFSR et Statistiques

Une suite produite par un LFSR d'état initial non nul et de polynôme de rétroaction primitif satisfie les critères statistiques de Golomb.

Exemple

Dans l'exemple du début, le registre interne prend toutes les valeurs de $\mathbb{F}_2^4\setminus\{0\}$. En particulier, le premier élément de chaque état prend $2^3=8$ fois la valeur 1 et $2^3-1=7$ fois la valeur 0. La suite chiffrante est exactement la suite de ces premiers éléments.

Algorithme de Berlekamp-Massey

Soit (s_t) une suite récurrente linéaire de complexité linéaire $\Lambda(s)$ inconnue.

Il existe un algorithme très efficace qui détermine le polynôme de rétroaction minimal à partir de n'importe quelle sous-séquence de $2\Lambda(s)$ termes consécutifs.

- Pour avoir des bonnes garanties de sécurité, il faudrait que la complexité linéaire soit extrêmement grande afin de résister à l'attaque de Berlekamp-Massey.
 Cependant, ceci implique d'avoir des LFSR de longueur trop grosse pour que ça soit praticable.
- Un LFSR seul n'est en général pas suffisant pour apporter de la sécurité. On verra au cours 3 comment augmenter la complexité linéaire afin de résister à l'attaque de Berlekamp-Massey.

Lecture 2 09 Septembre 2025