Cours 05 - Cryptanalyse Différentielle

Maxime Bombar

Introduction

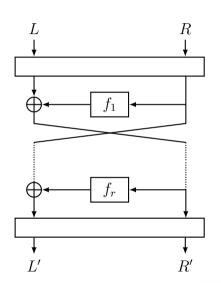
Modes d'Opérations de Chiffrement par Blocs

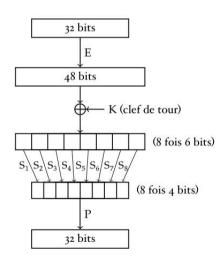
- Permettent d'étendre une primitive opérant sur un bloc, à des messages de taille arbitraire.
- Sécurité **prouvée**, souvent si la primitive est une **permutation aléatoire**.
- Attention au choix du padding (cf Attaque de Vaudenay, Challenge 04)
- Certains modes permettent d'assurer aussi l'intégrité.

Objectif: Analyser les primitives de chiffrement par blocs.

Cours 05 2 / 33

Rappel : Schémas de Feistel (e.g. DES)





Cours 05 3 / 33

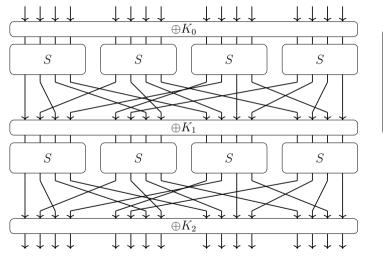
Faiblesse des fonctions de tour

V. Rijmen, B. Preneel (1997)

Attaques exploitant la non surjectivité des fonctions de tour pour monter une attaque.

Idée : Utiliser des fonctions booléennes **bijectives** $\mathbb{F}_2^n \to \mathbb{F}_2^n$.

Rappel : Réseaux de Substitutions-Permutations (SPN)



Fonctions de tour bijectives :

Confusion : Chaque S-box est une bijection **non linéaire**.

Diffusion : (ou Mixing) Permutation **linéaire** bit à bit.

Exemple : AES (Daemen, Rijmen)

Cours 05 5 / 33

Cryptanalyse Différentielle

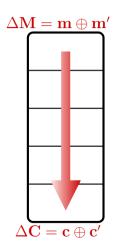
- Technique de cryptanalyse proposée par Biham et Shamir en 1990 pour DES.
- Certaines variantes étaient déjà connues des concepteurs de DES (IBM, NSA).

Idées principales

- On veut exploitier la structure de la primitive pour observer un biais statistique la distinguant d'une permutation aléatoire.
- Chosen-Plaintext Attack
- Pour deux messages (m, m') différents, leurs images (c, c') devraient être uniformément aléatoires, et idéalement indépendantes.
- **Idée**: prédire l'effet sur les chiffrés d'une légère différence $\Delta \mathbf{M} = \mathbf{m} \oplus \mathbf{m}'$.

Cours 05 6/33

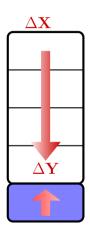
Distingueur Différentiel



- Dans une permutation aléatoire, tous les ΔC devraient être equiprobables.
- On estime théoriquement la probabilité $\mathbb{P}(\Delta \mathbf{C} = \mathbf{y} \mid \Delta \mathbf{M} = \mathbf{x})$.
- On évalue empiriquement si on observe (ou non) cette probabilité.
- Si le biais est suffisamment important, on a un distingueur.

Cours 05 7 / 33

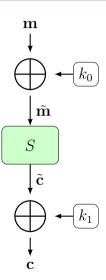
Exploiter le Distingueur



Recherche exhaustive intelligente sur la clé de dernier tour.

Cours 05 8 / 33

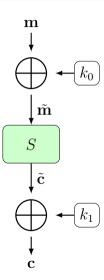
Caractéristiques Différentielles



Hypothèse : Attaque par clairs connus. On connaît des paires (\mathbf{m}, \mathbf{c}) .

• Imaginez que l'on connaisse en plus $\tilde{\mathbf{c}}$.

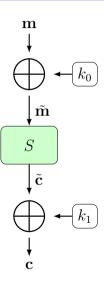
Cours 05 9 / 33



Hypothèse : Attaque par clairs connus. On connaît des paires (\mathbf{m}, \mathbf{c}) .

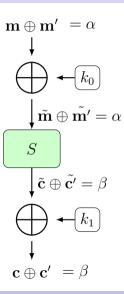
- Imaginez que l'on connaisse en plus $\tilde{\mathbf{c}}$.
- On pourrait en déduire k₁, puis tout le reste.

Cours 05 9 / 33



Hypothèse : Attaque par clairs connus. On connaît des paires (m, c).

- **Imaginez** que l'on connaisse en plus $\tilde{\mathbf{c}}$.
- On pourrait en déduire k_1 , puis tout le reste.
- **Problème** : Avec k_0 clé uniforme. et Sbijective, $\tilde{\mathbf{c}}$ est uniformément distribué.



Hypothèse: Attaque par clairs connus. On connaît des paires (m, c).

- Imaginez que l'on connaisse en plus $\tilde{\mathbf{c}}$.
- On pourrait en déduire k_1 , puis tout le reste
- **Problème**: Avec k_0 clé uniforme, et S bijective, $\tilde{\mathbf{c}}$ est uniformément distribué.
- Idée : $(\mathbf{m} \oplus k_0) \oplus (\mathbf{m}' \oplus k_0) = \mathbf{m} \oplus \mathbf{m}'$

Une remarque sur les différentielles

Différence

La **différence** entre deux éléments \mathbf{x}, \mathbf{x}' d'un groupe (G, \odot) est $\Delta \mathbf{x} \stackrel{\text{def}}{=} \mathbf{x} \odot (\mathbf{x}')^{-1}$.

En pratique

On se contentera souvent de $G = \mathbb{F}_2^n$, et \odot sera alors l'addition (*i.e.* le XOR bit à bit) :

$$\Delta \mathbf{x} = \mathbf{m} \oplus \mathbf{m}',$$

mais cette technique pourrait s'appliquer plus généralement, comme par exemple avec des primitives définies sur des alphabets différents comme \mathbb{F}_a (e.g. primitives dites « orientées vers l'arithmétisation ») ou $\mathbb{Z}/2^k\mathbb{Z}$ (e.g. chiffrement FEAL, cryptanalyse de MD5, SHA1, ...).

Principes de la cryptanalyse différentielle

- On choisit des couples de clairs \mathbf{x}, \mathbf{x}' de différence $\alpha \stackrel{\text{def}}{=} \Delta \mathbf{x}$ fixée.
- On considère leurs images $\mathbf{y} = f(\mathbf{x})$ et $\mathbf{y}' = f(\mathbf{x}')$ par une fonction booléenne $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$.
- On veut estimer $\beta \stackrel{\text{def}}{=} \Delta y = f(\mathbf{x} + \alpha) + f(\mathbf{x}) = \Delta_{\alpha}(f)(\mathbf{x})$.

- Un tel couple (α, β) (parfois noté $(\alpha \mapsto \beta)$) est appellé une **différentielle** (possible) de f.
- La cryptanalyse différentielle cherche à exploiter l'existence de différentielles $(\alpha \mapsto \beta)$ qui apparaissent avec grosse probabilité.

Le cas des chiffrements par blocs

- Un chiffrement est en général une fonction très compliquée (c'est l'objectif).
- Elle admet cependant une structure :
 - Elle est formée de plusieurs tours nettement plus simples
 - Les différentes boîtes S opèrent sur un petit nombre de bits (e.g. 8 bits pour l'AES, à comparer aux 128 bits d'un bloc).
- On va en général se concentrer sur quelques tours uniquement (voire un seul), et essayer de propager les différentielles qu'on trouve au reste du chiffrement.

Remarques importantes

Pour une fonction booléenne f linéaire, alors

$$(\Delta_{\alpha}f)(\mathbf{x}) = f(x+\alpha) + f(x) = f(\alpha)$$

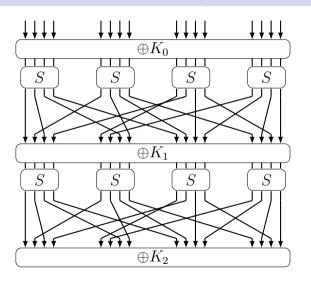
Pour une fonction linéaire (e.g. couches de diffusion), les seules différentielles possibles sont les $(\alpha \mapsto f(\alpha))$.

Pour une fonction booléenne affine $f = \ell + K_0$ où ℓ est linéaire, alors

$$(\Delta_{\alpha} f)(\mathbf{x}) = \ell(\alpha)$$

Une addition de clé ne change pas les différentielles.

Exemple sur un Chiffrement Jouet

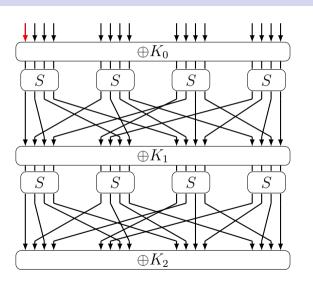


x	0	1	2	3	4	5	6	7
S(x)	2	0	4	3	9	5	6	7

x	8	9	a	b	С	d	е	f
S(x)	1	d	е	f	a	8	С	b

Exemple : S(1001) = S(9) = d

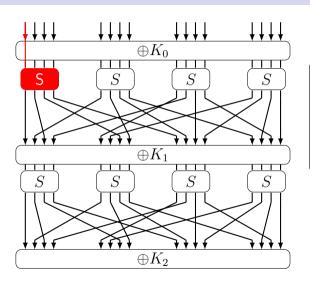
Une différence sur un bit



Correspond à la différentielle

$$\Delta \mathbf{X} = (1000, \mathbf{0}, \mathbf{0}, \mathbf{0}) = (8, 0, 0, 0)$$

Une différence sur un bit

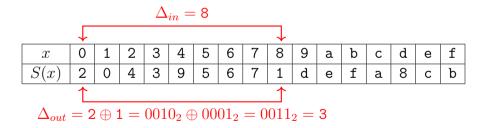


- Addition de clé → ne change pas la différentielle.
- On active la première boîte S, avec la différentielle $\Delta_{in} = 8$.

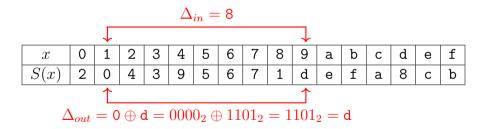
 $\Delta_{\rm in}=1000_2=$ 8. Peut-on prédire $\Delta_{\rm out}$ en sortie de S ?

1			l .	l			l		l .	l		l				f
S(x)	2	0	4	3	9	5	6	7	1	d	е	f	a	8	С	b

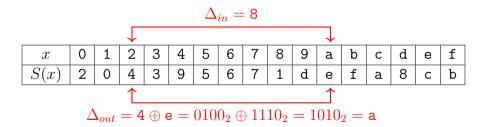
$$\Delta_{\text{in}} = 1000_2 = 8. \ \Delta_{\text{out}} \in \{3, \dots\}$$



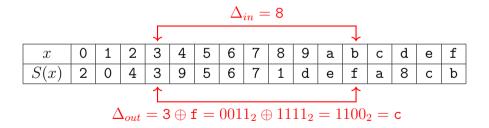
$$\Delta_{\mathsf{in}} = 1000_2 = \mathsf{8.}\ \Delta_{\mathsf{out}} \in \{\mathsf{3,d,\dots}\}$$



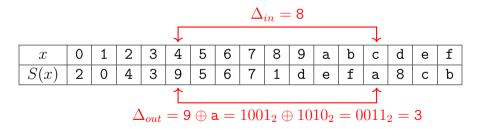
$$\Delta_{\mathsf{in}} = 1000_2 = \mathsf{8.}\ \Delta_{\mathsf{out}} \in \{\mathsf{3,d,a},\dots\}$$



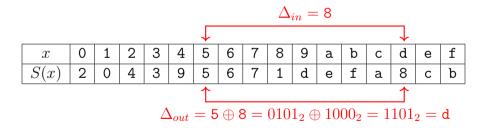
$$\Delta_{\mathsf{in}} = 1000_2 = \mathsf{8.}\ \Delta_{\mathsf{out}} \in \{\mathsf{3,d,a,c,\dots}\}$$



$$\Delta_{\mathsf{in}} = 1000_2 = \mathsf{8.}\ \Delta_{\mathsf{out}} \in \{\mathsf{3,d,a,c}\}$$



$$\Delta_{\mathsf{in}} = 1000_2 = \mathsf{8.}\ \Delta_{\mathsf{out}} \in \{\mathsf{3,d,a,c}\}$$



Tables des différences et Uniformité

Soit $f: \mathbb{F}_2^n \to \mathbb{F}_2^m$ une fonction booléenne, et $(\alpha \mapsto \beta)$ une différentielle. On note

$$\delta_f(\alpha, \beta) \stackrel{\text{def}}{=} \{ \mathbf{x} \in \mathbb{F}_2^n \mid (\Delta_{\alpha} f)(\mathbf{x}) = \beta \}.$$

- Le tableau représentant $\#\delta_f(\alpha,\beta)$ pour toute $(\alpha \mapsto \beta)$ est appelé **Difference** Distribution Table (DDT).
- C'est une table de taille $2^n \times 2^n$
- La valeur $\delta_f \stackrel{\text{def}}{=} \max_{\alpha \neq 0, \beta} \# \delta_f(\alpha, \beta)$ est appelée **Uniformité différentielle** de f.

Remarque: On a toujours $\delta_f(0,0) = \mathbb{F}_2^n$. La différentielle $(0 \mapsto 0)$ est appelée différentielle triviale

> Cours 05 17/33

Probabilité d'une différentielle

La probabilité $\pi_f(\alpha, \beta)$ d'une différentielle $(\alpha \mapsto \beta)$ est la probabilité qu'elle apparaisse sous une entrée uniforme x :

$$\pi_f(\alpha,\beta) = \mathbb{P}_{\mathbf{x}}(f(\mathbf{x}+\alpha) + f(\mathbf{x}) = \beta) = \frac{\#\delta_f(\alpha,\beta)}{2^n} \leqslant \frac{\delta_f}{2^n} \text{ pour } \alpha \neq 0.$$

- En cryptanalyse, on va chercher $(\alpha \mapsto \beta)$ offrant un gros biais.
- La résistance d'une S-box à la cryptanalyse différentielle est d'autant meilleure que son uniformité différentielle est faible.

DDT de notre Sbox

$\alpha \setminus \beta$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	4	4	-	-	-	-	4	-	-	-	-	4	-	-	-
2	-	-	4	4	-	-	4	-	-	-	-	-	-	-	-	4
3	-	4	-	4	4	-	-	-	-	-	-	-	-	-	4	-
4	-	-	4	-	4	4	-	-	-	-	-	4	-	-	-	-
5	-	-	-	4	-	4	-	4	-	4	-	-	-	-	-	-
6	-	-	-	-	4	-	4	4	-	-	-	-	-	4	-	-
7	-	4	-	-	-	4	4	-	-	-	4	-	-	-	-	-
8	-	-	-	4	-	-	-	-	-	-	4	-	4	4	-	-
9	-	4	-	-	-	-	-	-	-	-	-	4	-	4	-	4
a	-	-	-	-	-	4	-	-	-	-	-	-	4	-	4	4
Ъ	-	-	4	-	-	-	-	-	-	4	-	-	-	4	4	-
С	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-	-
d	-	-	-	-	4	-	-	-	-	4	4	-	-	-	-	4
е	-	-	-	-	-	-	-	4	-	-	4	4	-	-	4	-
f	-	-	-	-	-	-	4	-	-	4	-	4	4	-	-	-

On observe bien que

$$\Delta_{\sf in} = 8 \Rightarrow \Delta_{\sf out} \in \{\sf 3, a, c, d\}$$

DDT de notre Sbox

$\alpha \setminus \beta$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	4	4	-	-	-	-	4	-	-	-	-	4	-	-	-
2	-	-	4	4	-	-	4	-	-	-	-	-	-	-	-	4
3	-	4	-	4	4	-	-	-	-	-	-	-	-	-	4	-
4	-	-	4	-	4	4	-	-	-	-	-	4	-	-	-	-
5	-	-	-	4	-	4	-	4	-	4	-	-	-	-	-	-
6	-	-	-	-	4	-	4	4	-	-	-	-	-	4	-	-
7	-	4	-	-	-	4	4	-	-	-	4	-	-	-	-	-
8	-	-	-	4	-	-	-	-	-	-	4	-	4	4	-	-
9	-	4	-	-	-	-	-	-	-	-	-	4	-	4	-	4
a	-	-	-	-	-	4	-	-	-	-	-	-	4	-	4	4
b	-	-	4	-	-	-	-	-	-	4	-	-	-	4	4	-
С	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-	-
d	-	-	-	-	4	-	-	-	-	4	4	-	-	-	-	4
е	-	-	-	-	-	-	-	4	-	-	4	4	-	-	4	-
f	-	-	-	-	-	-	4	-	-	4	-	4	4	-	-	-

- La différentielle (c → 8)
 arrive avec probabilité 1
 → Problématique.
- (8 → a) et (a → c) arrivent toutes deux avec probabilité 1/4.

Bonnes propriétés de confusion : Fonctions APN

(Nyberg, Knudsen 1993)

Soit $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$ une fonction booléenne en n variables. Alors son uniformité différentielle vérifie $\delta(f) \geqslant 2$. Une fonction qui atteint cette borne est appelée **Almost Perfectly Nonlinear** (APN).

Preuve : $\delta(\alpha, \beta)$ est nécessairement pair, puisque si $\mathbf x$ vérifie $f(\mathbf x + \alpha) + f(\mathbf x) = \beta$, alors

$$f((\mathbf{x} + \alpha) + \alpha) + f(\mathbf{x} + \alpha) = f(\mathbf{x}) + f(\mathbf{x} + \alpha) = \beta.$$

Ainsi, pour toute solution x, alors $x + \alpha$ est aussi solution.

Cours 05 20 / 33

La conjecture APN

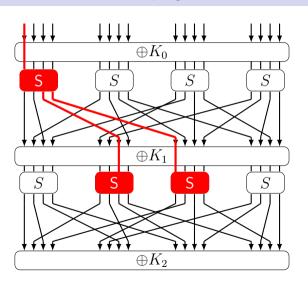
On ne connaît pas de **bijections** APN pour n pair, sauf pour n = 6.

Il était conjecturé pendant longtemps qu'il n'existait pas de bijections APN à un nombre pair de variables. La solution pour n=6 date de 2009 (Dillon).

Les S-box dans l'AES sont des bijections $\mathbb{F}_2^8 \to \mathbb{F}_2^8$ qui vérifient $\delta(S) = 4$.

Gérer plusieurs tours

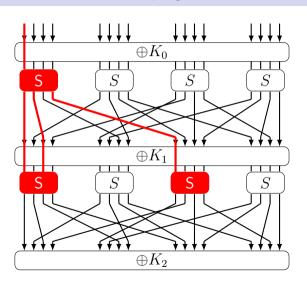
Propagation de la différence et Diffusion



$$\Delta_{in} = extsf{8} \Rightarrow \Delta_{\mathsf{out}} \in \{ extsf{3}, extsf{d}, extsf{a}, extsf{c}\}$$

Cours 05 22 / 33

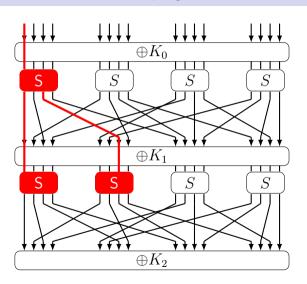
Propagation de la différence et Diffusion



$$\left\{\Delta_{in}= extsf{8}\Rightarrow\Delta_{\mathsf{out}}\in\{ extsf{3}, extsf{d}, extsf{a}, extsf{c}\}
ight\}$$

Cours 05 22 / 33

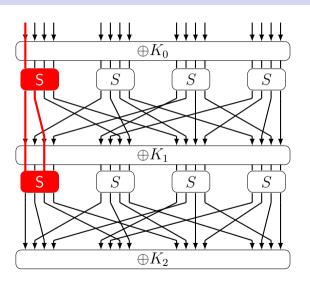
Propagation de la différence et Diffusion



$$\left\{\Delta_{in}= extsf{8}\Rightarrow\Delta_{\mathsf{out}}\in\{ extsf{3},\mathsf{d}, extsf{a},\mathsf{c}\}
ight\}$$

Cours 05 22 / 33

Propagation de la différence et Diffusion



$$\left\{\Delta_{in} = extsf{8} \Rightarrow \Delta_{\mathsf{out}} \in \{ extsf{3}, \mathsf{d}, \mathsf{a}, { extsf{c}}\}
ight\}$$

La couche linéaire ne **diffuse** la différentielle $(8 \mapsto c)$ qu'à **une** seule boîte S de la couche suivante!

Cours 05 22 / 33

Chemin Différentiel

Définition : Soit E un chiffrement à r tours. Une **trace différentielle** ou **chemin différentiel** (*Differential characteristic*) est un (r+1)-uplet $(\alpha_0, \ldots, \alpha_r)$ tel que $(\alpha_i \mapsto \alpha_{i+1})$ est une différentielle possible pour le tour i, et α_0 est la différence entre deux messages initiaux.

Si la fonction de tour était **linéaire**, alors il n'existerait qu'une seule trace différentielle issue d'une différence initiale α_0 :

$$\alpha_0 \mapsto F(\alpha_0) \mapsto F(F(\alpha_0)) \mapsto \cdots \mapsto F^r(\alpha_0).$$

Pour la sécurité, on veut maximiser le nombre de traces différentielles.

Cours 05 23 / 33

Probabilité d'une trace

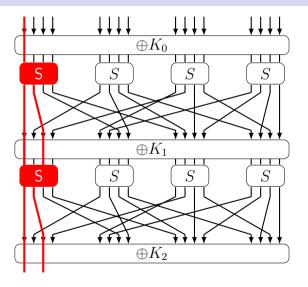
Sous l'hypothèse raisonnable que les tours sont indépendants, la probabilité d'une trace est simplement le **produit des probabilités** de chaque différentielle intermédiaire :

$$\pi(\alpha_0, \dots, \alpha_r) = \prod_{i=0}^{r-1} \pi_f(\alpha_i, \alpha_{i+1})$$

Remarque : La probabilité des traces ne dépend **que** de l'algorithme de chiffrement, et pas des données secrètes \implies précalculable.

Cours 05 24 / 33

Retour de notre exemple



- Couche 1 : $(\Delta_{in}^{(1)}, \Delta_{out}^{(1)}) = (8, c)$ avec probabilité $p_1 = 2^{-2}$.
- Couche linéaire L1 : $(c \mapsto a)$, une seule boîte S active
- Couche 2 + L2 : (a, a) avec probabilité $p_2 = 2^{-2}$.
- Après 2 tours, $(\Delta_{in}^{(1)}, \Delta_{out}^{(2)}) = (8, a)$ avec probabilité $\geq 2^{-2} \times 2^{-2} = 2^{-4}$. On peut itérer.
- Après r tours, (8, a) se produit donc avec probabilité $\geq 2^{-2r}$.

25 / 33

Assurer une bonne diffusion

Nombre de branchement (Branch Number), Daemen 1995

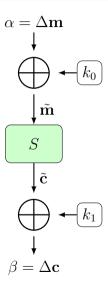
Le **nombre de branchement** $\mathcal B$ d'un chiffrement par blocs est le nombre minimal de Sbox actives sur deux tours consécutifs.

- Dans l'exemple, on a $\mathcal{B}=2$.
- Il existe une borne supérieure simple : $\mathcal{B} \leq 1+$ nombre de Sbox par tour.
- Il faut des couches linéaires plus compliquées que de simples permutations des bits.
- Dans l'AES on a 4 Sbox sur 32 bits (composition de SubBytes et ShiftRows).
- La diffusion est assurée par MixColumns.
- On peut vérifier que $\mathcal{B}=5$, et après 4 tours $\mathcal{B}=25$ qui est optimal.

Cours 05 26 / 33

Exploiter les Différentielles

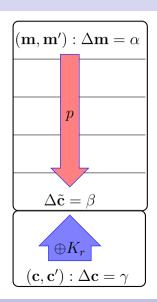
Exemple avec un seul tour



- (1) On a trouvé une bonne différentielle $(\alpha \to \beta)$ avec une probabilité p.
- (2) On va générer N clairs \mathbf{m} uniformes et calculer $\mathbf{m}' = \mathbf{m} \oplus \alpha$.
- (3) On appelle notre oracle de chiffrement pour obtenir des couples de chiffrés $(\mathbf{c}, \mathbf{c}')$.
- (4) Une paire $((\mathbf{m}, \mathbf{m}'), (\mathbf{c}, \mathbf{c}'))$ est bonne si $\Delta \mathbf{c} = \beta$. Il y en a $\approx pN$ pour N grand.
- (5) On connaît les $\delta(\alpha, \beta) = p2^n$ paires $((\tilde{\mathbf{m}}, \tilde{\mathbf{m}}'), (\tilde{\mathbf{c}}, \tilde{\mathbf{c}}'))$ intermédiaires ayant la différentielle $(\alpha \to \beta)$.
- (6) k_0 doit être de la forme $\mathbf{m} \oplus \tilde{\mathbf{m}}$ pour l'une de ces paires intermédiaires.

27 / 33

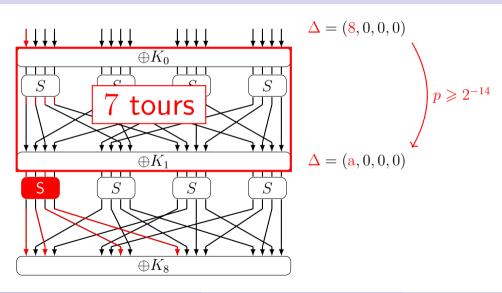
Attaque sur le dernier tour



- On suppose avoir une trace différentielle $(\alpha \mapsto \beta)$ avec probabilité $p \gg 2^{-|\mathsf{taille}\ \mathsf{de}\ \mathsf{bloc}|}$.
- On appelle l'oracle de chiffrement sur $N=\Theta(1/p)$ clairs de différence $\Delta \mathbf{m}=\alpha.$ En pratique $N\approx 3\times 1/p.$
- Pour chaque clé K_r possible (recherche exhaustive) on déchiffre 1 tour et on augmente un compteur si on observe $\Delta \tilde{\mathbf{c}} = \beta$. Ne regarder que les bits actifs!
- Vote majoritaire pour deviner la bonne clé K_r .
- Là encore, beaucoup de faux positifs (on peut observer $\Delta \tilde{\mathbf{c}} = \beta$ par chance).

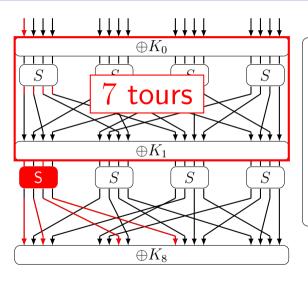
s 05 28 / 33

On continue l'exemple avec 8 tours



Cours 05 29 / 33

Complexité



- On a besoin d'environ $3 \times 2^{14} \approx 50000$ paires (clair, chiffré) pour exploiter la différentielle.
- On peut retrouver les bits des clés K_8 qui correspondent aux boîtes S actives (ici 4 bits).
- Brute-force les 12 bits restants ou nouvelle différentielle.

Cours 05 30 / 33

À retenir

- Pour une bonne confusion, il faut des boîtes S avec une petite uniformité différentielle.
- Pour une bonne diffusion, il faut un gros nombre de branchement.
- Dans le cas de l'AES, on est quasiment optimal!

Cours 05 31 / 33

Pour aller plus loin

- Il existe des outils pour aider à automatiser ces attaques statistiques.
 Particulièrement utile pour les designers, mais aussi pour les cryptanalystes. Par exemple Mixed Integer Linear Programming (MILP).
- La cryptanalyse différentielle admet de nombreuses variantes : Différentielles impossibles, cryptanalyse boomerang, différentielles d'ordre supérieur.

Cours 05 32 / 33

Acknowledgement

Ces transparents sont très largement inspirés du cours donné par Maria Eichlseder en 2021 https://www.youtube.com/watch?v=GQX8W8zKf2Q

Les exemples étant extrêmement bien choisis.

Cours 05 33 / 33