
Summer School: Introduction to Quantum Safe Cryptography

Problems Session 1

Basic Exercises on Codes

In what follows, | · | will denote the Hamming weight, namely

∀x ∈ Fk
q , |x| def= ♯ {i ∈ J1, nK, xi ̸= 0} .

Exercise 1. Give the dimension of the following linear codes:

1. {(f(x1), . . . , f(xn)) : f ∈ Fq[X] and deg(f) < k} where the xi’s are distinct elements
of Fq,

2. {(u,u+ v) : u ∈ U and v ∈ V } where U (resp. V ) is an [n, kU ]q-code (resp. [n, kV ]q-
code).

Exercise 2. Let G ∈ Fk×n
q be a generator matrix of some code C. Let H ∈ F(n−k)×n

q of

rank n− k such that GH⊤ = 0. Show that H is a parity-check matrix of C.

Exercise 3. Give the minimum distance of the following linear codes:

1. {(f(x1), . . . , f(xn)) : f ∈ Fq[X] and deg(f) < k} where the xi’s are distinct elements
of Fq.

2. {(u,u+ v) : u ∈ U and v ∈ V } where U (resp. V ) is a code of length n over Fq and
minimum distance dU (resp. dV ).

3. The Hamming code of length 2r − 1, namely the code which admits a parity check

matrix H ∈ Fr×(2r−1)
q

def
=

(
x⊤)

x∈Fr
2\{0}

.

Hint: A code has minimum distance d if and only if for some parity-check matrix H every
(d − 1)-tuple of columns are linearly independent and there is at least one linearly linked
d–tuple of columns.

Decoding Generalized Reed-Solomon Codes

The purpose of this Section is to describe a decoding algorithm for Generalized Reed-
Solomon (GRS) codes. In the last Practice Session, we will see that this family of codes is
not suitable for instanciating the McEliece Cryptosystem, but it is nevertheless the starting
point to NIST candidate Classic McEliece which uses a family of codes known as Goppa
Codes, derived from Reed-Solomon codes.
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Reed-Solomon Codes

Let k ≤ n be integers. Let x
def
= (xi)1≤i≤n be a tuple of pairwise distinct elements of a finite

field Fq, and let z
def
= (zi)1≤i≤n ∈

(
F⋆
q

)n
(the zi may be equal). Recall that the Generalized

Reed-Solomon code RSk(x, z) with evaluation points x and multipliers z is the code over
Fq defined by

RSk(x, z)
def
= {z1f(x1), . . . , znf(xn) : f ∈ Fq[X]<k} .

Suppose we are given a noisy codeword

y
def
= c+ e (1)

where c = (zif(xi))1≤i≤n ∈ RSk(x, z), and e ∈ Fn
q has Hamming weight t. Our goal is to

recover c, or equivalently the polynomial f ∈ Fq[X]<k.

1. Explain why we can suppose without loss of generality that all the zi are equal to 1.

2. From now on, we assume that zi = 1 for all i ∈ {1, . . . , n}. Let us introduce the
following polynomial

Λ(X) =
∏

i: ei ̸=0

(X − xi),

known as error locator polynomial.

Show that
∀i ∈ {1, . . . , n}, yiΛ(xi) = f(xi)Λ(xi) (2)

3. Remind that the yi’s and xi’s are known.

(a) Deduce from eq. (2) a system S1 of equations satisfied by the coefficients of f .

(b) How many equations and unknowns does this system have?

(c) Can you recover f?

4. Let N be the polynomial defined by Λ · f .

(a) Write a linear system S2 satisfied by the coefficients of N .

(b) How many unknowns and equations does S2 have?

5. Show that any solution of S1 is indeed a solution of S2. In other words, S2 is a priori,
more general than S1. It turns out that they are in fact equivalent.

6. Let (Λ1, N1) and (Λ2, N2) be two pairs of non zero solutions of S2 (in particular,
Λ1,Λ2 ̸= 0). Show that

N1

Λ1
=

N2

Λ2
= f.1

1In other words, the solutions of S2 form an Fq[X]−module of rank 1.
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7. Conclude:

(a) Deduce an algorithm which, given a noisy codeword y = c + e, the evaluation
vector x, recovers the codeword c.

(b) What is its time complexity?

About the Average Decoding Problem

Our goal in this section is to show that the average decoding problem can be stated, without
incidence on its average hardness, via the parity-check or generator point of view. To this
aim we will rely on the so-called statistical distance.

Recall that the statistical distance, also called the total variational distance, is a dis-
tance between probability distributions. In in the case where X and Y are two random
variables taking their values in a same finite space E , it is defined as

∆(X,Y )
def
=

1

2

∑
a∈E

|P(X = a)− P(Y = a)|

The statistical distance enjoys many interesting properties. Among others, it cannot in-
crease by applying any probabilistic algorithm as you have to show in the following question.

1. Let X,Y : Ω → D be two random variables. Let A be an algorithm taking as input
(x, r) ∈ D×{0, 1}ℓ (the input r denotes the internal randomness of A). Assume that
the distribution R of the internal randomness of R is independent from X and Y .
Show that,

∆
(
A (X,R) ,A (Y,R)

)
≤ ∆(X,Y )

2. Let G ∈ Fk×n
q (resp. H ∈ F(n−k)×n

q ) be a uniformly random matrix and Gk ∈ Fk×n
q

(resp. Hn−k ∈ F(n−k)×n
q ) be a uniformly random matrix of rank k (resp. n− k).

Show that

∆ (G,Gk) = O
(
q−(n−k)

) (
resp. ∆(H,Hn−k) = O

(
q−k

))
.

Hint: You can admit that the density of rank k matrices among all the ℓ×n matrices
with entries in Fq is equal to 1−O(qn−ℓ)
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Let us recall the following variant of DP which was introduced during the lecture:

DP′(n, q,R, τ). Let k
def
= ⌊Rn⌋ and t

def
= ⌊τn⌋.

Input: (G,y
def
= sG + x) where G, s and x are uniformly distributed over Fk×n

q , Fk
q and

words of Hamming weight t in Fn
q .

Output: an error e ∈ Fn
q of Hamming weight t such that y − e = mG for some m ∈ Fk

q .

Show that for any algorithm A solving this problem with probability ε and time T , there
exists an algorithm B which solves DP(n, q,R, τ) in time O

(
n3 + T

)
with probability ≥

ε−O
(
q−min(k,n−k)

)
. Show that we can exchange DP′ by DP in the previous question.

3. You are now ready to show the following statements.

(a) For any algorithm A solving DP′, with probability ε and time T , there exists
an algorithm B which solves DP(n, q,R, τ) in time O

(
n3 + T

)
with probability

≥ ε−O
(
q−min(k,n−k)

)
.

(b) Show that we can exchange DP′ by DP in the previous question.
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