Problems Session 2:

Cryptanalysis Challenge

Recall that code-based cryptosystems mostly rely on the hardness of the decoding problem:

Data: A parity-check matrix $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}$ and a syndrome $\mathbf{s}^{\top} \stackrel{\text { def }}{=} \mathbf{H} \mathbf{x}^{\top} \in \mathbb{F}_{q}^{(n-k)}$ with $|\mathbf{x}|=t$.

Goal: Recover a solution \mathbf{e} of Hamming weight t.

In order to better understand the security of cryptosystems based on this problem, it is important to assess its practical hardness with respect to today's computational resources. This is especially important for selecting concrete sets of parameters for the cryptosystems. In order to do that, cryptographers often generate a lot of challenges for different parameters, and ask other people to try and break them.

The goal of this practice session is to solve some challenges presented in https:// decodingchallenge.org/syndrome. We will use the SageMath software, and most of the challenges will assume that we work over the binary field \mathbb{F}_{2}.

Setting up the Challenges

We provide some helper functions which helps you setting up the challenges. They are available at https://maximebombar.fr/teaching_content/summer_schools/2024/zurich/ helper_challenges.sage.

Once you solved a challenge, please tell us!

Usage Example:

```
sage: load("helper_challenges.sage")
sage: download_challenges()
sage: H, s, w = parse_challenge("Challenges/SD_010")
sage: H
[1 0 0 0 0 0) 0|1 1 0 0 0 1]
[0
[0}0
[0}0
[0 0 0 0 0 1|1 1 0 1 1 1 1]
sage: s
(0, 1, 1, 1, 0)
sage: w
4
```


1 The Power of Linear Algebra: Prange Algorithm

Notation. For a matrix \mathbf{A} with n columns, or a vector \mathbf{x} of length n, and for $I \subset\{1, \ldots, n\}$, we denote by \mathbf{A}_{I} (resp. \mathbf{x}_{I}) the submatrix (resp. the subvector) formed by only keeping the columns of \mathbf{A} (resp. the entries of \mathbf{x}) which are indexed by I.

Recall one of the most basic generic decoding algorithms, namely Prange algorithm

Algorithm 1: Prange algorithm

Input: $\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{2}^{n-k}$ and w that $\mathbf{s}=\mathbf{e H}^{\top}$ for some \mathbf{e} of weight w.
Output: $\mathbf{x} \in \mathbb{F}_{2}^{n}$ with $|\mathbf{x}|=w$ and $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$.
1 Pick a set $I \subset\{1, \ldots, n\}$ of size k until $\mathbf{H}_{I^{\prime}}$ is full rank, where I^{\prime} is the complement set of I.
2 Solve the linear system $\left\{\begin{array}{c}\mathrm{xH}^{\top}=\mathbf{s} \\ \mathrm{x}_{I}=0\end{array}\right.$.
3 if $|\mathbf{x}|=w$ then return x
else
$6 \quad$ Go back to Step 1
(Q1) Implement Prange algorithm using SageMath, and try to run it to solve the first challenges.
Hint: For solving the linear system of Step 2, you can invert the submatrix $\mathbf{H}_{I^{\prime}}$.

2 It's Birthday Time: Dumer Algorithm

Recall from the lecture that Dumer algorithm is an improvement on the exhaustive search for decoding at the Gilbert-Varshamov distance (which is the case for those challenges), and for codes of rate close to 1 . This algorithm will be used as a subroutine in section 3 . Recall from the lecture that the goal is to split $\{1, \ldots, n\}$ into two random sets I_{1} and I_{2} of size $n / 2$ so that

$$
\begin{equation*}
\mathbf{s}=\mathbf{e} \mathbf{H}^{\top}=\mathbf{e}_{1} \mathbf{H}_{1}^{\top}+\mathbf{e}_{2} \mathbf{H}_{2}^{\top}, \tag{1}
\end{equation*}
$$

where $\mathbf{e}_{j}\left(\right.$ resp. $\left.\mathbf{H}_{j}\right)$ is the vector obtained from \mathbf{e} (resp. the matrix obtained from \mathbf{H}) by only keeping the coordinates (resp. the columns) indexed by I_{j}.

Equation (1) can be rewritten as

$$
\mathbf{0}=\mathbf{e} \mathbf{H}^{\top}-\mathbf{s}=\mathbf{e}_{1} \mathbf{H}_{1}^{\top}+\mathbf{e}_{2} \mathbf{H}_{2}^{\top}-\mathbf{s}
$$

i.e.,

$$
\begin{equation*}
\mathbf{e}_{1} \mathbf{H}_{1}^{\top}=\mathbf{s}-\mathbf{e}_{2} \mathbf{H}_{2}^{\top} \tag{2}
\end{equation*}
$$

and Dumer's bet is that the support of the error e spreads evenly over \mathcal{I}_{j}. In other words, we want to find vectors \mathbf{e}_{1} and \mathbf{e}_{2} of length $n / 2$ and Hamming weight $w / 2$.

Therefore, for each partition $\left(I_{1}, I_{2}\right)$ of size $n / 2$, we build the two lists

$$
\begin{align*}
& \mathcal{L}_{1} \stackrel{\text { def }}{=}\left\{\mathbf{x}_{1} \mathbf{H}_{1}: \mathbf{x}_{1} \in \mathbb{F}_{2}^{n / 2},\left|\mathbf{x}_{1}\right|=w / 2\right\}, \\
& \mathcal{L}_{2} \stackrel{\text { def }}{=}\left\{\mathbf{s}-\mathbf{x}_{2} \mathbf{H}_{2}: \mathbf{x}_{2} \in \mathbb{F}_{2}^{n / 2},\left|\mathbf{x}_{2}\right|=w / 2\right\}, \tag{3}
\end{align*}
$$

and we try to find collisions, i.e., elements in the intersection $\mathcal{L}_{1} \cap \mathcal{L}_{2}$.

```
Algorithm 2: Dumer algorithm
    Input: \(\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{2}^{n-k}\) and \(w\) that \(\mathbf{s}=\mathbf{e} \mathbf{H}^{\top}\) for some \(\mathbf{e}\) of weight \(w\).
    Output: A list of solutions \(\mathbf{x}\) with \(|\mathbf{x}|=w\) and \(\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}\).
    Pick uniformly at random a partition \(I_{1} \sqcup I_{2}\) of \(\{1, \ldots, n\}\), with parts of size \(n / 2\)
    Build the lists \(\mathcal{L}_{1}\) and \(\mathcal{L}_{2}\) defined in Equation (3)
    if \(\mathcal{L}_{1} \cap \mathcal{L}_{2}=\emptyset\) then
        Go back to Step 1.
    else
        \(\mathcal{L} \leftarrow \emptyset\)
        foreach ( \(\mathrm{x}_{1}, \mathbf{x}_{2}\) ) corresponding to an element in \(\mathcal{L}_{1} \cap \mathcal{L}_{2}\) do
            Set \(\mathbf{x}\) such that \(\mathbf{x}_{I_{1}}=\mathbf{x}_{1}\) and \(\mathbf{x}_{I_{2}}=\mathbf{x}_{2}\)
                \(\mathcal{L} \leftarrow \mathcal{L} \cup\{\mathbf{x}\}\)
            return \(\mathcal{L}\)
```

(Q2) Could you imagine a way to represent \mathcal{L}_{1} and \mathcal{L}_{2} to easily find collisions?
Hint: Use hash tables (or dictionnaries, in Python/SageMath)!

In Python/SageMath, the key of a dictionnary should be immutable, i.e., it should not be allowed to modify it once it is created.
For example:

```
sage: d = {} # Create an empty hash table
sage: x = vector(GF(2), [0, 1]) # some binary vector;
    # mutable.
sage: x
(0, 1)
sage: d[x] = 0
[...]
TypeError: mutable vectors are unhashable
sage: x.set_immutable() # Freeze it once and for all
sage: d[x] = 0
sage: d
{(0, 1): 0}
```

(Q3) Implement Dumer algorithm and test it on small examples.
(Q4) Check that your algorithm returns about $\frac{\binom{n / 2}{w / 2}^{2}}{2^{n-k}}$ solutions.

3 The Best of Both Worlds: First Information Set Decoding Algorithms

Dumer algorithm has a quadratic advantage over exhaustive search for decoding high rate codes at the Gilbert-Varshamov distance. However, it also returns a list of solutions, ... of size about the same as its time complexity! In other words, it finds solutions in constant amortized time. This is the key idea of Information Set Decoding algorithms (ISDs).

Indeed, let $I \subset\{1, \ldots, n$ be an information set of the code \mathcal{C}, of size k. Instead of asking the candidate solutions \mathbf{x} to have no error on I as in Prange algorithm, we will relax this condition and allow a small number p of errors, but on a larger set $J \supset I$, of size $k+\ell$ for some parameters p and ℓ :

$$
\begin{equation*}
\left|\mathbf{x}_{J}\right|=p \quad \text { where }|J|=k+\ell \text { and } J \supset I . \tag{4}
\end{equation*}
$$

Note that there are very few constraints on those two parameters, we only ask

$$
\begin{equation*}
0 \leq \ell \leq n-k \quad \text { and } \quad p \leq \min \{k+\ell, w\} . \tag{5}
\end{equation*}
$$

(Q5) How can we efficiently check that J contains an information set of \mathcal{C} ?
(Q6) Let $\mathcal{C}_{J}=\left\{\mathbf{c}_{J}: \mathbf{c} \in \mathcal{C}\right\} \subset \mathbb{F}_{2}^{k+\ell}$ be obtained from \mathcal{C} by only keeping the coordinates indexed by J. Show that if J contains an information set, then \mathcal{C}_{J} is a code of length $k+\ell$ and dimension k.

We can then solve a smaller decoding problem of length $k+\ell$, dimension k (and therefore rate $1-\frac{\ell}{k+\ell}$), and decoding distance p. Since this new code has rate close to one, we can efficiently make use of Dumer algorithm to recover a list of solutions of this smaller problem. However, we need to compute a parity-check matrix of this punctured code \mathcal{C}_{J}. Let $J^{\prime} \stackrel{\text { def }}{=}\{1, \ldots, n\} \backslash J$ be the complement set of J. It has size $n-k-\ell$.
(Q7) Let \mathbf{H} be a parity-check matrix of the code \mathcal{C}. Let $\mathbf{H}_{J} \in \mathbb{F}_{2}^{(n-k) \times(k+\ell)}$ and $\mathbf{H}_{J^{\prime}} \in \mathbb{F}_{2}^{(n-k) \times(n-k-\ell)}$ be the submatrices obtained from \mathbf{H} by keeping only the columns indexed by J (resp. J^{\prime}).
(a) Show that $\mathbf{H}_{J^{\prime}}$ has full rank, i.e., that it has rank $n-k-\ell$.
(b) Let $\mathbf{S} \in \mathbb{F}_{2}^{(n-k) \times(n-k)}$ be a non-singular matrix such that

$$
\mathbf{S H}_{J^{\prime}}=\binom{I_{n-k-\ell}}{0_{\ell \times(n-k-\ell)}}
$$

and write

$$
\mathbf{S H}_{J}=\binom{\mathbf{H}_{1}}{\mathbf{H}_{2}} .
$$

Show that \mathbf{H}_{2} is a parity-check matrix of the code \mathcal{C}_{J}.
(c) How can we compute such a matrix \mathbf{S} ?
(Q8) Let $\mathbf{s}_{1} \in \mathbb{F}_{2}^{n-k-\ell}$ and $\mathbf{s}_{2} \in \mathbb{F}_{2}^{\ell}$ such that $\mathbf{s} \mathbf{S}^{\top}=\left(\begin{array}{ll}\mathbf{s}_{1} & \mathbf{s}_{2}\end{array}\right)$. Let $\mathbf{x}_{2} \in \mathbb{F}_{q}^{k+\ell}$ be a solution of weight p of $\mathbf{x}_{2} \mathbf{H}_{2}^{\top}=\mathbf{s}_{2}$. Let $\mathbf{x} \in \mathbb{F}_{2}^{n}$ be a solution of the linear system $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$ such that $\mathbf{x}_{J}=\mathbf{x}_{2}$.
(a) What should be the value of $\mathbf{x}_{J^{\prime}}$?
(b) Conclude.

All in all, this yields the following algorithm

```
Algorithm 3: ISD algorithm using Dumer as a subroutine
    Input: \(\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{2}^{n-k}, w\) and parameters \(p, \ell\) satisfying Equation (5) and
        such that \(\mathbf{s}=\mathbf{e H}{ }^{\top}\) for some \(\mathbf{e}\) of weight \(w\).
    Output: \(\mathbf{x}\) with \(|\mathbf{x}|=w\) and \(\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}\).
1 Pick uniformly at random a set \(J \subset\{1, \ldots, n\}\) of size \(k+\ell\), and let
    \(I \stackrel{\text { def }}{=}\{1, \ldots, n\} \backslash J\).
2 if \(J\) does not contain an information set (Condition (Q5)) then
        Goto Step 1
\(4 \mathbf{E}, \mathbf{S} \leftarrow \operatorname{Gaussian} E l i m i n a t i o n\left(\mathbf{H}_{I}\right)\)
5 Define \(\mathbf{H}_{1} \in \mathbb{F}_{2}^{(n-k-\ell) \times(k+\ell)}, \mathbf{H}_{2} \in \mathbb{F}_{2}^{\ell \times(k+\ell)}\) such that \(\mathbf{S H} \mathbf{H}_{J}=\binom{\mathbf{H}_{1}}{\mathbf{H}_{2}}\)
6 Define \(\mathbf{s}_{1} \in \mathbb{F}_{2}^{n-k-\ell}, \mathbf{s}_{2} \in \mathbb{F}_{2}^{\ell}\) such that \(\mathbf{s S}^{\top}=\left(\begin{array}{ll}\mathbf{s}_{1} & \mathbf{s}_{2}\end{array}\right)\)
7 Using Dumer Algorithm (2), compute a list of partial solutions
\[
\mathcal{L} \subset\left\{\mathbf{x}_{2} \in \mathbb{F}_{2}^{k+\ell}: \mathbf{x}_{2} \mathbf{H}_{2}^{\top}=\mathbf{s}_{2} \text { and }\left|\mathbf{x}_{J}\right|=p\right\}
\]
```

foreach $\mathrm{x}_{2} \in \mathcal{L}$ do
Let $\mathbf{x} \in \mathbb{F}_{2}^{n}$ be a solution to the linear system $\mathbf{x} \mathbf{H}^{\top}=\mathbf{s}$ such that $\mathbf{x}_{J}=\mathbf{x}_{2}$. if $|\mathbf{x}|=w$ then

return x

Go back to Step 1.
9. Implement Algorithm 3 in SageMath, and use it to break as many challenges as you can!
Remark: You may want to play with different choices of parameters p and ℓ.

