
Summer School: Introduction to Quantum Safe Cryptography

Problems Session 2:
Cryptanalysis Challenge

Recall that code-based cryptosystems mostly rely on the hardness of the decoding problem:

Data: A parity-check matrix H ∈ F(n−k)×n
q and a syndrome s⊤

def
= Hx⊤ ∈ F(n−k)

q

with |x| = t.

Goal: Recover a solution e of Hamming weight t.

In order to better understand the security of cryptosystems based on this problem, it is
important to assess its practical hardness with respect to today’s computational resources.
This is especially important for selecting concrete sets of parameters for the cryptosys-
tems. In order to do that, cryptographers often generate a lot of challenges for different
parameters, and ask other people to try and break them.

The goal of this practice session is to solve some challenges presented in https://

decodingchallenge.org/syndrome. We will use the SageMath software, and most of the
challenges will assume that we work over the binary field F2.

Setting up the Challenges

We provide some helper functions which helps you setting up the challenges. They are avail-
able at https://maximebombar.fr/teaching_content/summer_schools/2024/zurich/

helper_challenges.sage.

Once you solved a challenge, please tell us!

1

https://decodingchallenge.org/syndrome
https://decodingchallenge.org/syndrome
https://maximebombar.fr/teaching_content/summer_schools/2024/zurich/helper_challenges.sage
https://maximebombar.fr/teaching_content/summer_schools/2024/zurich/helper_challenges.sage

Summer School: Introduction to Quantum Safe Cryptography 1 PRANGE

Usage Example:

sage: load("helper_challenges.sage")

sage: download_challenges ()

sage: H, s, w = parse_challenge("Challenges/SD_010")

sage: H

[1 0 0 0 0|1 1 0 0 1]

[0 1 0 0 0|1 1 1 1 0]

[0 0 1 0 0|0 1 0 0 1]

[0 0 0 1 0|1 1 0 0 1]

[0 0 0 0 1|1 0 1 1 1]

sage: s

(0, 1, 1, 1, 0)

sage: w

4

1 The Power of Linear Algebra: Prange Algorithm

Notation. For a matrixA with n columns, or a vector x of length n, and for I ⊂ {1, . . . , n},
we denote by AI (resp. xI) the submatrix (resp. the subvector) formed by only keeping
the columns of A (resp. the entries of x) which are indexed by I.

Recall one of the most basic generic decoding algorithms, namely Prange algorithm

Algorithm 1: Prange algorithm

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 and w that s = eH⊤ for some e of weight w.
Output: x ∈ Fn

2 with |x| = w and xH⊤ = s.
1 Pick a set I ⊂ {1, . . . , n} of size k until HI′ is full rank, where I ′ is the

complement set of I.

2 Solve the linear system

{
xH⊤ = s
xI = 0

.

3 if |x| = w then
4 return x

5 else
6 Go back to Step 1

(Q1) Implement Prange algorithm using SageMath, and try to run it to solve the
first challenges.

Hint: For solving the linear system of Step 2, you can invert the submatrix
HI′ .

2

Summer School: Introduction to Quantum Safe Cryptography 2 DUMER

2 It’s Birthday Time: Dumer Algorithm

Recall from the lecture that Dumer algorithm is an improvement on the exhaustive search
for decoding at the Gilbert-Varshamov distance (which is the case for those challenges),
and for codes of rate close to 1. This algorithm will be used as a subroutine in section 3.
Recall from the lecture that the goal is to split {1, . . . , n} into two random sets I1 and I2
of size n/2 so that

s = eH⊤ = e1H
⊤
1 + e2H

⊤
2 , (1)

where ej (resp. Hj) is the vector obtained from e (resp. the matrix obtained from H) by
only keeping the coordinates (resp. the columns) indexed by Ij .

Equation (1) can be rewritten as

0 = eH⊤ − s = e1H
⊤
1 + e2H

⊤
2 − s

i.e.,
e1H

⊤
1 = s− e2H

⊤
2 (2)

and Dumer’s bet is that the support of the error e spreads evenly over Ij . In other words,
we want to find vectors e1 and e2 of length n/2 and Hamming weight w/2.

Therefore, for each partition (I1, I2) of size n/2, we build the two lists

L1
def
=

{
x1H1 : x1 ∈ Fn/2

2 , |x1| = w/2
}
,

L2
def
=

{
s− x2H2 : x2 ∈ Fn/2

2 , |x2| = w/2
}
,

(3)

and we try to find collisions, i.e., elements in the intersection L1 ∩ L2.
Algorithm 2: Dumer algorithm

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 and w that s = eH⊤ for some e of weight w.
Output: A list of solutions x with |x| = w and xH⊤ = s.

1 Pick uniformly at random a partition I1 ⊔ I2 of {1, . . . , n}, with parts of size n/2
2 Build the lists L1 and L2 defined in Equation (3)
3 if L1 ∩ L2 = ∅ then
4 Go back to Step 1.

5 else
6 L ← ∅
7 foreach (x1,x2) corresponding to an element in L1 ∩ L2 do
8 Set x such that xI1 = x1 and xI2 = x2

9 L ← L ∪ {x}
10 return L

3

Summer School: Introduction to Quantum Safe Cryptography 3 ISD

(Q2) Could you imagine a way to represent L1 and L2 to easily find collisions?
Hint: Use hash tables (or dictionnaries, in Python/SageMath)!

In Python/SageMath, the key of a dictionnary should be immutable, i.e., it should not
be allowed to modify it once it is created.
For example:

sage: d = {} # Create an empty hash table

sage: x = vector(GF(2), [0, 1]) # some binary vector;

mutable.

sage: x

(0, 1)

sage: d[x] = 0

[...]

TypeError: mutable vectors are unhashable

sage: x.set_immutable () # Freeze it once and for all

sage: d[x] = 0

sage: d

{(0, 1): 0}

(Q3) Implement Dumer algorithm and test it on small examples.

(Q4) Check that your algorithm returns about

(n/2
w/2

)2
2n−k

solutions.

3 The Best of Both Worlds: First Information Set Decoding
Algorithms

Dumer algorithm has a quadratic advantage over exhaustive search for decoding high rate
codes at the Gilbert-Varshamov distance. However, it also returns a list of solutions, . . . of
size about the same as its time complexity! In other words, it finds solutions in constant
amortized time. This is the key idea of Information Set Decoding algorithms (ISDs).

Indeed, let I ⊂ {1, . . . , n be an information set of the code C, of size k. Instead of asking
the candidate solutions x to have no error on I as in Prange algorithm, we will relax this
condition and allow a small number p of errors, but on a larger set J ⊃ I, of size k + ℓ for
some parameters p and ℓ:

|xJ | = p where |J | = k + ℓ and J ⊃ I. (4)

4

Summer School: Introduction to Quantum Safe Cryptography 3 ISD

Note that there are very few constraints on those two parameters, we only ask

0 ≤ ℓ ≤ n− k and p ≤ min{k + ℓ, w}. (5)

(Q5) How can we efficiently check that J contains an information set of C?

(Q6) Let CJ = {cJ : c ∈ C} ⊂ Fk+ℓ
2 be obtained from C by only keeping the coordi-

nates indexed by J . Show that if J contains an information set, then CJ is a
code of length k + ℓ and dimension k.

We can then solve a smaller decoding problem of length k+ℓ, dimension k (and therefore

rate 1 − ℓ

k + ℓ
), and decoding distance p. Since this new code has rate close to one, we

can efficiently make use of Dumer algorithm to recover a list of solutions of this smaller
problem. However, we need to compute a parity-check matrix of this punctured code CJ .
Let J ′ def= {1, . . . , n} \ J be the complement set of J . It has size n− k − ℓ.

(Q7) Let H be a parity-check matrix of the code C. Let HJ ∈ F(n−k)×(k+ℓ)
2 and

HJ ′ ∈ F(n−k)×(n−k−ℓ)
2 be the submatrices obtained from H by keeping only

the columns indexed by J (resp. J ′).

(a) Show that HJ ′ has full rank, i.e., that it has rank n− k − ℓ.

(b) Let S ∈ F(n−k)×(n−k)
2 be a non-singular matrix such that

SHJ ′ =

(
In−k−ℓ

0ℓ×(n−k−ℓ)

)
and write

SHJ =

(
H1

H2

)
.

Show that H2 is a parity-check matrix of the code CJ .
(c) How can we compute such a matrix S?

(Q8) Let s1 ∈ Fn−k−ℓ
2 and s2 ∈ Fℓ

2 such that sS⊤ =
(
s1 s2

)
. Let x2 ∈ Fk+ℓ

q be

a solution of weight p of x2H
⊤
2 = s2. Let x ∈ Fn

2 be a solution of the linear
system xH⊤ = s such that xJ = x2.

(a) What should be the value of xJ ′?

(b) Conclude.

All in all, this yields the following algorithm

5

Summer School: Introduction to Quantum Safe Cryptography 3 ISD

Algorithm 3: ISD algorithm using Dumer as a subroutine

Input: H ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , w and parameters p, ℓ satisfying Equation (5) and
such that s = eH⊤ for some e of weight w.

Output: x with |x| = w and xH⊤ = s.
1 Pick uniformly at random a set J ⊂ {1, . . . , n} of size k + ℓ, and let

I
def
= {1, . . . , n} \ J .

2 if J does not contain an information set (Condition (Q5)) then
3 Goto Step 1

4 E,S← GaussianElimination(HI)

5 Define H1 ∈ F(n−k−ℓ)×(k+ℓ)
2 ,H2 ∈ Fℓ×(k+ℓ)

2 such that SHJ =

(
H1

H2

)
6 Define s1 ∈ Fn−k−ℓ

2 , s2 ∈ Fℓ
2 such that sS⊤ =

(
s1 s2

)
7 Using Dumer Algorithm (2), compute a list of partial solutions

L ⊂
{
x2 ∈ Fk+ℓ

2 : x2H
⊤
2 = s2 and |xJ | = p

}

8 foreach x2 ∈ L do

9 Let x ∈ Fn
2 be a solution to the linear system xH⊤ = s such that xJ = x2.

10 if |x| = w then
11 return x

12 Go back to Step 1.

9. Implement Algorithm 3 in SageMath, and use it to break as many challenges
as you can!

Remark: You may want to play with different choices of parameters p and ℓ.

6

	Prange
	Dumer
	ISD

