Problems Session 2:

Cryptanalysis Challenge

Recall that code-based cryptosystems mostly rely on the hardness of the decoding problem:

Data: A parity-check matrix $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$ and a syndrome $\mathbf{s}^{\top} \stackrel{\text{def}}{=} \mathbf{H} \mathbf{x}^{\top} \in \mathbb{F}_q^{(n-k)}$ with $|\mathbf{x}| = t$.

Goal: Recover a solution \mathbf{e} of Hamming weight t.

In order to better understand the security of cryptosystems based on this problem, it is important to assess its *practical* hardness with respect to today's computational resources. This is especially important for selecting concrete sets of parameters for the cryptosystems. In order to do that, cryptographers often generate a lot of challenges for different parameters, and ask other people to try and break them.

The goal of this practice session is to solve some challenges presented in https://decodingchallenge.org/syndrome. We will use the SageMath software, and most of the challenges will assume that we work over the binary field \mathbb{F}_2 .

Setting up the Challenges

We provide some helper functions which helps you setting up the challenges. They are available at https://maximebombar.fr/teaching_content/summer_schools/2024/zurich/helper_challenges.sage.

Once you solved a challenge, please tell us!

Usage Example:

```
sage: load("helper_challenges.sage")
sage: download_challenges()
sage: H, s, w = parse_challenge("Challenges/SD_010")
sage: H
[1 0 0 0 0|1 1 0 0 1]
[0 1 0 0 0|1 1 1 1 0]
[0 0 1 0 0|0 1 0 0 1]
[0 0 0 1 0|1 1 0 0 1]
[0 0 0 0 1|1 0 1 1 1]
sage: s
(0, 1, 1, 1, 0)
sage: w
4
```

1 The Power of Linear Algebra: Prange Algorithm

Notation. For a matrix \mathbf{A} with *n* columns, or a vector \mathbf{x} of length *n*, and for $I \subset \{1, \ldots, n\}$, we denote by \mathbf{A}_I (resp. \mathbf{x}_I) the submatrix (resp. the subvector) formed by only keeping the columns of \mathbf{A} (resp. the entries of \mathbf{x}) which are indexed by *I*.

Recall one of the most basic generic decoding algorithms, namely Prange algorithm

 Algorithm 1: Prange algorithm

 Input: $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_2^{n-k}$ and w that $\mathbf{s} = \mathbf{e}\mathbf{H}^\top$ for some \mathbf{e} of weight w.

 Output: $\mathbf{x} \in \mathbb{F}_2^n$ with $|\mathbf{x}| = w$ and $\mathbf{x}\mathbf{H}^\top = \mathbf{s}$.

 1 Pick a set $I \subset \{1, \ldots, n\}$ of size k until $\mathbf{H}_{I'}$ is full rank, where I' is the complement set of I.

 2 Solve the linear system $\begin{cases} \mathbf{x}\mathbf{H}^\top = \mathbf{s} \\ \mathbf{x}_I = 0 \end{cases}$.

 3 if $|\mathbf{x}| = w$ then

 4 \lfloor return \mathbf{x}

 5 else

 6 \lfloor Go back to Step 1

(Q1) Implement Prange algorithm using SageMath, and try to run it to solve the first challenges.
 Hint: For solving the linear system of Step 2, you can invert the submatrix

 $\mathbf{H}_{I'}$.

2 It's Birthday Time: Dumer Algorithm

Recall from the lecture that Dumer algorithm is an improvement on the exhaustive search for decoding at the Gilbert-Varshamov distance (which is the case for those challenges), and for codes of rate close to 1. This algorithm will be used as a subroutine in section 3. Recall from the lecture that the goal is to split $\{1, \ldots, n\}$ into two random sets I_1 and I_2 of size n/2 so that

$$\mathbf{s} = \mathbf{e}\mathbf{H}^{\top} = \mathbf{e}_1\mathbf{H}_1^{\top} + \mathbf{e}_2\mathbf{H}_2^{\top},\tag{1}$$

where \mathbf{e}_j (resp. \mathbf{H}_j) is the vector obtained from \mathbf{e} (resp. the matrix obtained from \mathbf{H}) by only keeping the coordinates (resp. the columns) indexed by I_j .

Equation (1) can be rewritten as

$$\mathbf{0} = \mathbf{e}\mathbf{H}^{\top} - \mathbf{s} = \mathbf{e}_{1}\mathbf{H}_{1}^{\top} + \mathbf{e}_{2}\mathbf{H}_{2}^{\top} - \mathbf{s}$$
$$\mathbf{e}_{1}\mathbf{H}_{1}^{\top} = \mathbf{s} - \mathbf{e}_{2}\mathbf{H}_{2}^{\top}$$
(2)

i.e.,

and Dumer's bet is that the support of the error \mathbf{e} spreads evenly over \mathcal{I}_j . In other words, we want to find vectors \mathbf{e}_1 and \mathbf{e}_2 of length n/2 and Hamming weight w/2.

Therefore, for each partition (I_1, I_2) of size n/2, we build the two lists

$$\mathcal{L}_{1} \stackrel{\text{def}}{=} \left\{ \mathbf{x}_{1} \mathbf{H}_{1} \colon \mathbf{x}_{1} \in \mathbb{F}_{2}^{n/2}, |\mathbf{x}_{1}| = w/2 \right\},$$

$$\mathcal{L}_{2} \stackrel{\text{def}}{=} \left\{ \mathbf{s} - \mathbf{x}_{2} \mathbf{H}_{2} \colon \mathbf{x}_{2} \in \mathbb{F}_{2}^{n/2}, |\mathbf{x}_{2}| = w/2 \right\},$$
(3)

and we try to find collisions, *i.e.*, elements in the intersection $\mathcal{L}_1 \cap \mathcal{L}_2$.

Algorithm 2: Dumer algorithm

Input: $\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{2}^{n-k}$ and w that $\mathbf{s} = \mathbf{e}\mathbf{H}^{\top}$ for some \mathbf{e} of weight w. **Output:** A list of solutions \mathbf{x} with $|\mathbf{x}| = w$ and $\mathbf{x}\mathbf{H}^{\top} = \mathbf{s}$.

- 1 Pick uniformly at random a partition $I_1 \sqcup I_2$ of $\{1, \ldots, n\}$, with parts of size n/2
- ${\bf 2}$ Build the lists ${\cal L}_1$ and ${\cal L}_2$ defined in Equation (3)
- 3 if $\mathcal{L}_1 \cap \mathcal{L}_2 = \emptyset$ then
- 4 Go back to Step 1.

5 else

 $6 \quad | \quad \mathcal{L} \leftarrow \emptyset$

7 | foreach
$$(\mathbf{x}_1, \mathbf{x}_2)$$
 corresponding to an element in $\mathcal{L}_1 \cap \mathcal{L}_2$ do

8 Set **x** such that $\mathbf{x}_{I_1} = \mathbf{x}_1$ and $\mathbf{x}_{I_2} = \mathbf{x}_2$

9 |
$$\mathcal{L} \leftarrow \mathcal{L} \cup \{\mathbf{x}\}$$

10 return \mathcal{L}

(Q2) Could you imagine a way to represent \mathcal{L}_1 and \mathcal{L}_2 to easily find collisions? Hint: Use hash tables (or dictionnaries, in Python/SageMath)!

In Python/SageMath, the key of a dictionnary should be *immutable*, *i.e.*, it should not be allowed to modify it once it is created. For example:

(Q3) Implement Dumer algorithm and test it on small examples.

(Q4) Check that your algorithm returns about $\frac{\binom{n/2}{w/2}^2}{2^{n-k}}$ solutions.

3 The Best of Both Worlds: First Information Set Decoding Algorithms

Dumer algorithm has a quadratic advantage over exhaustive search for decoding high rate codes at the Gilbert-Varshamov distance. However, it also returns *a list* of solutions, ... of size about the same as its time complexity! In other words, it finds solutions in *constant amortized time*. This is the key idea of *Information Set Decoding* algorithms (ISDs).

Indeed, let $I \subset \{1, \ldots, n \text{ be an information set of the code } C$, of size k. Instead of asking the candidate solutions \mathbf{x} to have no error on I as in Prange algorithm, we will relax this condition and allow a small number p of errors, but on a larger set $J \supset I$, of size $k + \ell$ for some parameters p and ℓ :

$$|\mathbf{x}_J| = p$$
 where $|J| = k + \ell$ and $J \supset I$. (4)

Note that there are very few constraints on those two parameters, we only ask

$$0 \le \ell \le n - k \quad \text{and} \quad p \le \min\{k + \ell, w\}.$$
(5)

- (Q5) How can we efficiently check that J contains an information set of C?
- (Q6) Let $C_J = {\mathbf{c}_J : \mathbf{c} \in \mathcal{C}} \subset \mathbb{F}_2^{k+\ell}$ be obtained from \mathcal{C} by only keeping the coordinates indexed by J. Show that if J contains an information set, then C_J is a code of length $k + \ell$ and dimension k.

We can then solve a smaller decoding problem of length $k+\ell$, dimension k (and therefore rate $1 - \frac{\ell}{k+\ell}$), and decoding distance p. Since this new code has rate close to one, we can efficiently make use of Dumer algorithm to recover a list of solutions of this smaller problem. However, we need to compute a parity-check matrix of this *punctured* code C_J . Let $J' \stackrel{\text{def}}{=} \{1, \ldots, n\} \setminus J$ be the complement set of J. It has size $n - k - \ell$.

- (Q7) Let **H** be a parity-check matrix of the code C. Let $\mathbf{H}_J \in \mathbb{F}_2^{(n-k) \times (k+\ell)}$ and $\mathbf{H}_{J'} \in \mathbb{F}_2^{(n-k) \times (n-k-\ell)}$ be the submatrices obtained from **H** by keeping only the columns indexed by J (resp. J').
 - (a) Show that $\mathbf{H}_{J'}$ has full rank, *i.e.*, that it has rank $n k \ell$.
 - (b) Let $\mathbf{S} \in \mathbb{F}_2^{(n-k) \times (n-k)}$ be a non-singular matrix such that

$$\mathbf{SH}_{J'} = \begin{pmatrix} I_{n-k-\ell} \\ 0_{\ell \times (n-k-\ell)} \end{pmatrix}$$

and write

$$\mathbf{SH}_J = egin{pmatrix} \mathbf{H}_1 \ \mathbf{H}_2 \end{pmatrix}.$$

Show that \mathbf{H}_2 is a parity-check matrix of the code \mathcal{C}_J .

- (c) How can we compute such a matrix \mathbf{S} ?
- (Q8) Let $\mathbf{s}_1 \in \mathbb{F}_2^{n-k-\ell}$ and $\mathbf{s}_2 \in \mathbb{F}_2^{\ell}$ such that $\mathbf{s}\mathbf{S}^{\top} = (\mathbf{s}_1 \ \mathbf{s}_2)$. Let $\mathbf{x}_2 \in \mathbb{F}_q^{k+\ell}$ be a solution of weight p of $\mathbf{x}_2\mathbf{H}_2^{\top} = \mathbf{s}_2$. Let $\mathbf{x} \in \mathbb{F}_2^n$ be a solution of the linear system $\mathbf{x}\mathbf{H}^{\top} = \mathbf{s}$ such that $\mathbf{x}_J = \mathbf{x}_2$.
 - (a) What should be the value of $\mathbf{x}_{J'}$?
 - (b) Conclude.

All in all, this yields the following algorithm

Algorithm 3: ISD algorithm using Dumer as a subroutine Input: $\mathbf{H} \in \mathbb{F}_{2}^{(n-k) \times n}, \mathbf{s} \in \mathbb{F}_{2}^{n-k}, w$ and parameters p, ℓ satisfying Equation (5) and such that $\mathbf{s} = \mathbf{e}\mathbf{H}^{\top}$ for some \mathbf{e} of weight w. Output: \mathbf{x} with $|\mathbf{x}| = w$ and $\mathbf{x}\mathbf{H}^{\top} = \mathbf{s}$. 1 Pick uniformly at random a set $J \subset \{1, \dots, n\}$ of size $k + \ell$, and let $I \stackrel{\text{def}}{=} \{1, \dots, n\} \setminus J$. 2 if J does not contain an information set (Condition (Q5)) then 3 \lfloor Goto Step 1 4 $\mathbf{E}, \mathbf{S} \leftarrow \text{GAUSSIANELIMINATION}(\mathbf{H}_{I})$ 5 Define $\mathbf{H}_{1} \in \mathbb{F}_{2}^{(n-k-\ell) \times (k+\ell)}, \mathbf{H}_{2} \in \mathbb{F}_{2}^{\ell \times (k+\ell)}$ such that $\mathbf{SH}_{J} = \begin{pmatrix} \mathbf{H}_{1} \\ \mathbf{H}_{2} \end{pmatrix}$ 6 Define $\mathbf{s}_{1} \in \mathbb{F}_{2}^{n-k-\ell}, \mathbf{s}_{2} \in \mathbb{F}_{2}^{\ell}$ such that $\mathbf{sS}^{\top} = (\mathbf{s}_{1} \quad \mathbf{s}_{2})$ 7 Using DUMER Algorithm (2), compute a list of partial solutions $\mathcal{L} \subset \left\{\mathbf{x}_{2} \in \mathbb{F}_{2}^{k+\ell}: \mathbf{x}_{2}\mathbf{H}_{2}^{\top} = \mathbf{s}_{2}$ and $|\mathbf{x}_{J}| = p\right\}$

s foreach $\mathbf{x}_2 \in \mathcal{L}$ do

- 9 Let $\mathbf{x} \in \mathbb{F}_2^n$ be a solution to the linear system $\mathbf{x}\mathbf{H}^{\top} = \mathbf{s}$ such that $\mathbf{x}_J = \mathbf{x}_2$.
- 10 | if $|\mathbf{x}| = w$ then
- 11 return x

12 Go back to Step 1.

9. Implement Algorithm 3 in SageMath, and use it to break as many challenges as you can!

Remark: You may want to play with different choices of parameters p and ℓ .

 $\mathbf{6}$