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Problems Session 3:
Cryptanalysis and McEliece Cryptosystem

1 McEliece cryptosystem based on GRS codes

1.1 Appetizer

This exercise is widely inspired by [CGGO+13].

Notation 1. Let k be a non-negative integer. We denote by Fq[X]≤k the space of
polynomials with coefficients in Fq of degree less than or equal to k.

Recall the definition of a Generalized Reed-Solomon code (GRS):

Definition 1 (Generalized Reed-Solomon Code). Let x = (x1, . . . , xn) ∈ Fn
q be

an n-tuple of pairwise distinct elements of Fq (in particular it entails n ≤ q), and
let k ≤ n. Let z = (z1, . . . , zn) ∈ (F×

q )
n be an n-tuple of non zero elements, not

necessarily distinct. The GRSk(x, z) code is defined as

GRSk(x, z)
def
= {(z1P (x1), . . . , znP (xn)) | P ∈ Fq[X]<k}. (1)

x and z are respectively called the support and multiplier vectors of GRSk(x, z).

Recall from Lecture and Problem Session 1 that GRSk(x, z) is a code of length n, dimension
k and minimum distance n− k+1. Moreover, there exist efficient decoding algorithms up

to
n− k

2
errors, which is the largest amount of errors one can hope to uniquely decode.

Q1. Show that GRSk(x, z)
⊥ = GRSn−k(x, z

⊥) where z⊥i =
1

zi
∏

i ̸=j(xi − xj)
. In

particular, the dual of a GRS code of dimension k, is a GRS code of dimension
n− k, with same support.

Hint: Use Lagrange interpolation.

Due to their unique decoding property, Neiderreiter suggested in [Nie86] to instanciate
McEliece cryptosystem with this class of codes, in order to reduce the size of the keys.
However, in [SS92] Sidelnikov and Shestakov proved that such an instantiation was insecure.
The goal of this exercise is to give another attack on GRS-based McEliece cryptosystem,
using a very versatile tool called the star product of codes. Although being slower than the
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historical attack of Sidelnikov and Shestakov, this tool proved itself very useful to design
attacks on instanciations of McEliece cryptosystems based on many families of algebraic
codes such as Algebraic-Geometry codes (of any genus), which are generalizations of Reed-
Solomon codes, Wild Goppa codes over quadratic extensions, some subspace subcodes of
GRS codes etc... This tool is also at the core of a very recent approach to cryptanalyze
McEliece cryptosystem based on alternant and Goppa codes [CMT23].1

1.2 A Distinguisher

Given access to a public GRS code Cpub = GRSk(x, z) (through a generator matrix for
instance), the goal is to recover a pair (x′, z′) such that Cpub = GRSk(x

′, z′) (Note that
there exist many secret data (x, z) which yield the same public GRS code).

Q2. Let α, γ ∈ F×
q and b = (b, . . . , b) ∈ Fn

q .

(a) Show that GRSk(x, z) = GRSk(αx+ b, γz).

(b) Deduce that we can assume without loss of generality that x1 = 0 and
x2 = 1.

We introduce the star-product, also known as the Schur product (or coordinate-wise prod-
uct):

Definition 2 (⋆-product).

• Let a,b ∈ Fn
q . We define the ⋆-product of a and b as

a ⋆ b
def
= (a1b1, . . . , anbn). (2)

• Let A,B ⊂ Fn
q be two linear codes. We define their ⋆-product as

A ⋆ B def
= Span{a ⋆ b | a ∈ A,b ∈ B}, (3)

Remark 1. The presence of Span is here to ensure that A ⋆ B is still a linear code.

When A = B, we denote by A2 def
= A ⋆A the square of the code A.

1There has been a lot of progress in the past few years, even though the parameters of NIST submission
Classic McEliece are still out of reach.

2



Summer School: Introduction to Quantum Safe Cryptography 1 GRS CODES

Q3. Let C ∈ Fn
q be a linear code of dimension k.

(a) Show that

dim C2 ≤ min

(
n,

(
k + 1
2

))
. (4)

(b) Show that the complexity of computing a basis of C2 given a basis of C is
O(k2n2) operations in Fq.

In reality, this inequality is sharp for random codes. Indeed, it has been proven in

[CCMZ15] that when

(
k + 1
2

)
≤ n then dim C2 =

(
k + 1
2

)
with overwhelming probability.

In particular, the dimension of the square of a random code is quadratic in the dimension
of the code.

Q4. (a) Show that for k ≤ (n+ 1)/2,

GRSk(x, z)
2 = GRS2k−1(x, z ⋆ z). (5)

(b) Deduce a way to distinguish between small rate Generalized Reed-
Solomon codes and random linear codes using the ⋆-product.

(c) Show that high rate GRS codes (when 2k−1 > n) are also distinguishable
from random codes.

Q5. (Bonus.) Can you give a very simple way (not using the ⋆-product) to dis-
tinguish between RSk(x) (i.e., the multiplier is the all 1 vector) and a random
linear code? In particular, for McEliece cryptosystem, using a non-trivial mul-
tiplier is necessary.
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1.3 Defining the Filtration

So far we have found a distinguisher between GRS and random linear codes. It can under-
mine the security, but it is not yet an attack on the cryptosystem. There is still some work
to do to recover the secret parameters (x, z). From now on, we assume that x1 = 0, x2 = 1

and k ≤ n− 1

2
.

Defining the Filtration. In order to recover the secret parameters, we will build
a filtration of codes, i.e., a sequence (Ci) of codes such that

Cpub = C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Ci ⊃ . . . (6)

where Ci ⋆ Cj ⊂ Ci+j .

In order to build this filtration, we will need a new operation on codes, namely the
shortening.

Definition 3 (Shortened Code). Let C be a linear code, and I ⊂ {1, . . . , n} a set of
positions. We define the shortening of C at I as the code SI(C):

SI(C)
def
= {c ∈ C | ci = 0 ∀i ∈ I}. (7)

Remark 2. This definition is slighly different as the one usually used. Indeed, with
this definition SI(C) contains codewords which are 0 on the same coordinates, and one
usually delete those entries, yielding a code of length n− |I|. However, the ⋆-product
is only well defined for vectors of same length, therefore it is easier to keep those zero
components.

Q6. Given a code C and a set of positions I, how can we compute a basis of SI(C)?

For i, j > 0 and i+ j < k, we denote by C(i, j) the subcode of Cpub = GRS(x, z) given
by the evaluation of polynomials vanishing at 0 with multiplicity at least i and at 1 with

multiplicity at least j. We also set C(0, 0) def
= Cpub.
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Q7. (a) Give an interpretation of C(1, 0), C(0, 1) and C(1, 1) as shortenings of Cpub.
Hint: Recall that x1 = 0 and x2 = 1.

(b) Deduce that they can be easily computed.

Q8. Assume k ≤ n/2, and let i, j be integers such that 1 ≤ i ≤ k−2 and i+j ≤ k−2.

(a) Show that
C(i+ 1, j) ⋆ C(i− 1, j) = C(i, j)2

and

C(i, j + 1) ⋆ C(i, j − 1) = C(i, j)2.

(8)

(b) Deduce an algorithm which takes as inputs generator matrices of C(i, j)
and C(i− 1, j) and recovers a basis of C(i+ 1, j) in time O(k2n3 + k3n2)
operations over Fq.

1.4 Finally: the Attack!

For i ≤ k − 1, set Ci
def
= C(i, 0).

Q9. Check that Ci indeed defines a filtration with the wanted properties, and that
each term can actually be computed from previous ones.

Q10. What is the dimension of Ck−1? What is the shape of a basis?

Q11. Consider the code C(k− 2, 1). What is its dimension? What does a basis look
like?

Q12. Show that x can be easily recovered from a basis of C(k− 1, 0) and C(k− 2, 1).

Q13. Conclude the attack. What is the overall time complexity?
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