
POST-QUANTUM CRYPTOGRAPHY - CODES
STARTING EXERCISES

1. Basic Exercises on Codes

In what follows, | · | will denote the Hamming weight, namely

∀x ∈ Fk
q , |x| def

= ♯ {i ∈ J1, nK, xi ̸= 0} .

Exercise 1. Give the dimension of the following linear codes:

1. {(f(x1), . . . , f(xn)) : f ∈ Fq[X] and deg(f) < k} where the xi’s are distinct elements of
Fq,

2. {(u,u+ v) : u ∈ U and v ∈ V } where U (resp. V ) is an [n, kU ]q-code (resp. [n, kV ]q-
code).

Exercise 2. Let G ∈ Fk×n
q be a generator matrix of some code C. Let H ∈ F(n−k)×n

q of rank n−k

such that GH⊺ = 0. Show that H is a parity-check matrix of C.

Exercise 3. Give the minimum distance of the following codes:

1. {(f(x1), . . . , f(xn)) : f ∈ Fq[X] and deg(f) < k} where the xi’s are distinct elements of
Fq.

2. {(u,u+ v) : u ∈ U and v ∈ V } where U (resp. V ) is a code of length n over Fq and
minimum distance dU (resp. dV ).

3. The Hamming code of length 2r − 1, namely the code which admits a parity check matrix
H ∈ Fr×(2r−1)

q
def
= (x⊺)x∈Fr

2\{0}
.

Hint: A code has minimum distance d if and only if for some parity-check matrix H every
(d− 1)-tuple of columns are linearly independent and there is at least one linearly linked d–tuple
of columns.

Exercise 4. Let H be a parity-check matrix of a code C of minimum distance d. Show that the
He⊺’s are distinct when |e| ≤ d−1

2 .

Exercise 5. Let C ⊆ Fn
2 be a code of minimum distance d and t > n− d

2 . Show that there exists
at most one codeword c ∈ C of weight t.

Exercise 6. Let us introduce the following problems

Problem 1 (Noisy Codeword Decoding). Given G ∈ Fk×n
q of rank k, t ∈ J0, nK, y ∈ Fn

q

where y = c+ e with c = mG for some m ∈ Fk
q and |e| = t, find e.

Problem 2 (Syndrome Decoding). Given H ∈ F(n−k)×n
q of rank n−k, t ∈ J0, nK, s ∈ Fn−k

q

where He⊺ = s⊺ with |e| = t, find e.

Show that any solver of Problem 2 (resp. 1) can be turned in polynomial time into an algorithm
solving Problem 1 (resp. 2).
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Exercise 7. Recall that

GRSk(x, z)
def
= {(z1f(x1), . . . , znf(xn)) : f ∈ Fq[X] and deg(f) < k} .

where z ∈ (F⋆
q)

n and x be an n-tuple of pairwise distinct elements of Fq (in particular n ≤ q) and
k ≤ n.

Show that GRSk(x, z)
∗ = GRSn−k(x, z

′) where z′i =
1

zi
∏

j ̸=i(xi−xj)
. Deduce that GRSk(x, z) has a

parity-check matrix of the following form:

H
def
=


1 1 · · · 1

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

. . . . . . . . . . . .

xn−k−1
1 xn−k−1

2 · · · xn−k−1
n



z′1 0

z′2
. . .

0 z′n



Exercise 8. Describe how the public-key encryption scheme of McEliece works with generator
matrices.

Exercise 9. Let us define the problem DDP as

Problem 3 (Decision Decoding Problem - DDP(n, q,R, τ)). Let k def
= ⌊Rn⌋ and t

def
= ⌊τn⌋.

– Distributions:
∗ D0 : (H, s) be uniformly distributed over F(n−k)×n

q × Fn−k
q .

∗ D1 : (H,xH⊺) where H (resp. x) being uniformly distributed over F(n−k)×n
q

(resp. words of Hamming weight t).
– Input: (H, s) distributed according to Db where b ∈ {0, 1} is uniform,
– Decision: b′ ∈ {0, 1}.

Let us introduce the following definitions,

Definition 1. The DDP(n, q,R, τ)-advantage of an algorithm A is defined as:

AdvDDP(n,q,R,τ)(A )
def
=

1

2
(P (A (H, s) = 1 | b = 1)− P (A (H, s) = 1 | b = 0))

where the probabilities are computed over the internal randomness of A , a uniform b ∈
{0, 1} and inputs according to Db which is defined in DDP(n, q,R, τ) (Problem 3). We
define the DDP(n, q,R, τ)-computational success in time T as:

SuccDDP(n,q,R,τ)(t)
def
= max

A :|A |≤T

(
AdvDDP(n,q,R,τ)(A )

)
.

where |A | denotes the running time of A .

Prove that when (H, s) is distributed according to Db (for a fixed b ∈ {0, 1}) we have:

P (A (H, s) = b) =
1

2
+AdvDDP(A ).

2. About Random Codes

Recall for this section the definition of the statistical distance, sometimes called the total variational
distance. It is a distance for probability distributions, which in the case where X and Y are two
random variables taking their values in a same finite space E is defined as

∆(X,Y )
def
=

1

2

∑
x∈E

|P (X = a)− P (Y = a)| .
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Furthermore, St will denote the set of words of Hamming weight t in Fn
q , namely

St
def
=

{
x ∈ Fn

q : |x| = t
}
.

Exercise 10 (Important). Let us introduce the following average decoding problems

Problem 4 (Decoding Problem - DP(n, q,R, τ)). Let k def
= ⌊Rn⌋ and t

def
= ⌊τn⌋.

– Input : (H, s
def
= xH⊺) where H (resp. x) is uniformly distributed over F(n−k)×n

q

(resp. words of Hamming weight t in Fn
q ).

– Output : an error e ∈ Fn
q of Hamming weight t such that eH⊺ = s.

Problem 5. DP′(n, q,R, τ). Let k def
= ⌊Rn⌋ and t

def
= ⌊τn⌋.

– Input : (G,y
def
= sG + e) where G, s and e are uniformly distributed over Fk×n

q , Fk
q

and words of Hamming weight t in Fn
q .

– Output : an error e′ ∈ Fn
q of Hamming weight t such that y − e′ = mG for some

m ∈ Fk
q .

Show that for any algorithm A solving DP′(n, q,R, τ) with probability ε and time T , there exists an
algorithm B which solves DP(n, q,R, τ) in time O

(
n3 T

)
with probability ≥ ε−O

(
q−min(k,n−k)

)
.

Show that we can exchange DP′ by DP in the previous question.

Hint: the following lemma may be useful

Lemma 1. Let G ∈ Fk×n
q (resp. H ∈ F(n−k)×n

q ) be a uniformly random matrix and
Gk ∈ Fk×n

q (resp. Hn−k ∈ F(n−k)×n
q ) be a uniformly random matrix of rank k (resp.

n− k). We have:

∆(G,Gk) = O
(
q−(n−k)

) (
resp. ∆(H,Hn−k) = O

(
q−k

))
Exercise 11. Show that for any non-zero y ∈ Fn

q , G being distributed uniformly at random among
Fk×n
q ,

PG(y ∈ C∗) =
1

qk

where C∗ is defined as
{
c∗ ∈ Fn

q : Gc∗
⊺
= 0

}
.

Exercise 12. Let G and H being uniformly distributed at random among Fk×n
q and F(n−k)×n

q .
Show that,

EG (♯ {c ∈ C : |c| = t}) = qk − 1

qn

(
n

t

)
(q−1)t and EH (♯ {c ∈ C : |c| is even}) = 1

2

qn + (2− q)n

qn−k
.

Hint: For the first part of the exercise first show that mG is uniformly distributed over Fn
q when

m ∈ Fk
q\{0}.

Exercise 13. Let H ∈ F(n−k)×n
q being uniformly distributed and s ∈ Fn−k

q , e ∈ St being some
random variables. Show that

EH

(
∆
(
eH

⊺
, s
))

=
1

q(n−k)×n

∑
H0∈F(n−k)×n

q

∆
(
eH

⊺
0 , s

)

Exercise 14. Let us admit the following lemma (a variation of the left-over hash lemma)
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Lemma 2. Let H = (hi)i∈I be a finite family of applications from E in F . Let ε be the
“collision bias”

Ph,e,e′(h(e) = h(e′)) =
1

♯F
(1 + ε)

where h is uniformly drawn in H , e and e′ be uniformly distributed over E. Let U be the
uniform distribution over F and D(h) be the distribution h(e) when e is chosen uniformly
at random in E. We have,

Eh (∆(D(h),U )) ≤ 1

2

√
ε.

Let e (resp. eBer) be uniformly distributed at random in the words of Hamming weight t (resp.
the eBer

i are independent Bernoulli random variables of parameter τ
def
= t/n) in Fn

2 . Show that

EH

(
∆
(
eH

⊺
, s
))

≤ 1

2

√
2n−k − 1(

n
t

) .

EH

(
∆
(
eBerH

⊺
, s
))

≤ 1

2

√
2k (1 + (1− 2τ)2)

n
.

What can you deduce when comparing both results with e or eBer? What is the “better” choice of
error x to ensure that xH⊺ is uniformly distributed?

Exercise 15. Let C be a fixed [n, k]q-code of parity-check matrix H and y, s, e ∈ Fn
q × Fn−k

q ×St

be uniformly distributed. Our aim in this exercise is to show that ∆(c+ e,y) = ∆(eH⊺, s).

1. Given s ∈ Fn−k
q , let y(s) ∈ Fn

q be such that y(s)H⊺ = s. Show that∑
y∈Fn

q

∣∣∣∣Pe,c(c+ e = y)− 1

qn

∣∣∣∣ = ∑
s∈Fn−k

q

∑
c′∈C

∣∣∣∣Pe,c(c+ e = y(s) + c′)− 1

qn

∣∣∣∣ .
2. Deduce that ∆(c+ e,y) = ∆(eH⊺, s).

3. Information Set Decoding Algorithms

Exercise 16. Let τ ∈ [0, 1/2]. Show how from an algorithm solving DP(n, 2, R, τ) (Problem 4) we
can deduce an algorithm solving DP(n, 2, R, 1− τ) in the same running-time (and reciprocally).

Let I ⊆ J1, nK and c ∈ Fn
q . We will denote cI the vector whose coordinates are those of

c = (ci)1≤i≤n which are indexed by I , i.e. cI = (ci)i∈I . Given H ∈ Fr×n
q we will denote by

HI the matrix whose columns are those of H which are indexed by I .

Exercise 17. Let C be an [n, k]-code and I ⊆ J1, nK be of size k. Recall that I is an information
set of C if

∀x ∈ Fk
q : ∃!c ∈ C such that cI = x.

Show that,

I is an information set for C ⇐⇒ ∀G generator matrix of C, GI is invertible

⇐⇒ ∀H parity-check matrix of C, HI is invertible

Let I be an information set of C. Given x ∈ Fk
q , how to compute the unique codeword c ∈ C such

that cI = x? Is it easy?

Exercise 18. Recall that Prange’s algorithm works as follows

The distribution Dt.
– If t < q−1

q (n− k), Dt only outputs 0 ∈ Fk
q ,
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– if t ∈ J q−1
q (n−k), k+ q−1

q (n−k)K, Dt outputs uniform vectors of weight t− q−1
q (n−k),

– if t > k + q−1
q (n− k), Dt outputs uniform vectors of weight k.

The algorithm.
1. Picking the information set. Let I ⊆ J1, nK be a random set of size k. If HI ∈

F(n−k)×(n−k)
q is not of full-rank, pick another set I .

2. Linear algebra. Perform a Gaussian elimination to compute a non-singular matrix
S ∈ F(n−k)×(n−k)

q such that SHI = 1n−k.
3. Test Step. Pick x ∈ Fk

q according to the distribution Dt and let e ∈ Fn
q be such that

eI =
(
s− xH

⊺
I

)
S
⊺ ; eI = x.

If |e| ≠ t go back to Step 1, otherwise it is a solution.

Describe Prange’s algorithm with the generator matrix formalism in the same fashion as above
(with also three steps and the distribution Dt).

Exercise 19. Let C be an [n, k]-code and J ⊆ J1, nK be of size k + ℓ. Recall that J is an
augmented information set of C if it contains an information set.

Show that,

J is an augmented information set for C ⇐⇒ D
def
=

{
cJ ∈ Fk+ℓ

q : c ∈ C
}

is a code of dimension k.

Given H ∈ F(n−k)×n
q be a parity-check matrix of C. Suppose that J is an augmented information

set of C. Give a parity-check matrix of D(this code is known that punctured code of C at positions
J ).

Exercise 20. Recall that Dumer’s algorithm is as follows

The algorithm.
1. Splitting in two parts. First we randomly select a set S ⊆ J1, nK of n/2 positions.
2. Building lists step. We build,

L1
def
=

{
HS e

⊺
1 : |e1| =

t

2

}
; L2

def
=

{
−HS e

⊺
2 + s

⊺
: |e2| =

t

2

}
.

3. Collisions step. We merge the above lists (with an efficient technique like hashing or
sorting)

L1 ▷◁ L2
def
=

{
(e1, e2) ∈ L1 × L2, HS e

⊺
1 = −HS e

⊺
2 + s

⊺}
.

and output this new list. If it is empty we go back to Step 1 and pick another set of
n/2 positions.

and we have the following proposition

Proposition 1. The complexity CDumer(n, q,R, τ) of Dumer’s algorithm to solve
DP(n, q,R, τ) is up to a polynomial factor (in n) given by√(

n

t

)
(q − 1)t +

(
n
t

)
(q − 1)t

qn−k

Furthermore, Dumer’s algorithm finds max

(
1,

(nt)(q−1)t

qn−k

)
solutions (up to a polynomial

factor in n) where k
def
= Rn and t

def
= τn.
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We have made the choice in the above Dumer’s algorithm to build lists of maximum size, namely(
n/2
t/2

)
(q− 1)t/2. Let (H, s) ∈ F(n−k)×n

q × Fn−k
q be an instance of a decoding problem that we would

like to solve at distance t. We suppose that (H, s) are uniformly distributed, in particular we do
not suppose that there is always a solution. Show that a slight variation of Dumer’s algorithm
enables to compute L2

qn−k solutions (there is no maximum in this formula, why?) in time L+ L2

qn−k

(up to polynomial factors). Furthermore L has necessarily to verify L ≤
(
n/2
t/2

)
(q − 1)t/2, why?

What is the condition over t and L for this algorithm to output solutions in amortized time one?
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