POST-QUANTUM CRYPTOGRAPHY - CODES
STARTING EXERCISES

1. Basic EXERCISES ON CODES

In what follows, | - | will denote the Hamming weight, namely
def .
Vx € IF’;, x| = t{ie[1,n], z; #0}.
Exercise 1. Give the dimension of the following linear codes:

L {(f(z1),..., f(zn)) : f €Fy[X] and deg(f) < k} where the x;’s are distinct elements of
F,,

2. {(u,u+v):ueUandveV} where U (resp. V) is an [n, kyls-code (resp. [n,ky]q
code).

Exercise 2. Let G € F’;X" be a generator matriz of some code C. Let H € Fénfk)xn of rank n—k
such that GHT = 0. Show that H is a parity-check matriz of C.

Exercise 3. Give the minimum distance of the following codes:

1 {(f(x1),..., f(zn)) : f€TFy[X] and deg(f) < k} where the x;’s are distinct elements of
F,.

2. {(w,u+v): ueUandveV} where U (resp. V) is a code of length n over F, and
minimum distance dy (resp. dy).

3. The Hamming code of length 2" — 1, namely the code which admits a parity check matrix
He R, 1< (XT)xerp\ o}

Hint: A code has minimum distance d if and only if for some parity-check matrix H every

(d — 1)-tuple of columns are linearly independent and there is at least one linearly linked d—tuple
of columns.

Exercise 4. Let H be a parity-check matriz of a code C of minimum distance d. Show that the
He'’s are distinct when |e| < 451,

Exercise 5. Let C C Fy be a code of minimum distance d and t > n — g. Show that there exists
at most one codeword ¢ € C of weight t.

Exercise 6. Let us introduce the following problems

Problem 1 (Noisy Codeword Decoding). Given G € Fi*™ of rank k, t € [0,n], y € F}
where y = ¢ + e with ¢ = mG for some m € IF’; and |e| =t, find e.

Problem 2 (Syndrome Decoding). Given H € anfk)xn of rankn—k,t € [0,n], s € Fp—*
where He' = sT with |e| = ¢, find e.

Show that any solver of Pmblem@ (resp. can be turned in polynomial time into an algorithm
solving Problem (resp. @)
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Exercise 7. Recall that
GRS (x,2) & {(z1/(21), -, 20 f (x0)) © f € FylX] and deg(f) < k}.

where z € (Fy)" and x be an n-tuple of pairwise distinct elements of Fy (in particular n < q) and
k<n.
Show that GRSk (x,2z)* = GRS, _,(x,2") where z, =

parity-check matriz of the following form:

m Deduce that GRSk (x,2) has a

1 1 1 o 0
T1 T2 Tn Z/
def 2
H = 2 x3 x2
n—k—1 _n—k—1 n—k—1 0 2!
x] xh xn

Exercise 8. Describe how the public-key encryption scheme of McFEliece works with generator
matrices.

Exercise 9. Let us define the problem DDP as

Problem 3 (Decision Decoding Problem - DDP(n, ¢, R, 7)). Let k Y | Rn) and t % |n].
— Distributions:
x 9 : (H,s) be uniformly distributed over ]Fg"ik)xn X IFZ;_’“.
x 91 : (H,xH") where H (resp. x) being uniformly distributed over ]F,(Jn_k)xn
(resp. words of Hamming weight t).
— Input: (H,s) distributed according to 9, where b € {0,1} is uniform,
— Decision: b’ € {0,1}.

Let us introduce the following definitions,

Definition 1. The DDP(n,q, R, 7)-advantage of an algorithm < is defined as:

def 1

AdvPPPa B (g7) 5 (P(/(H,s) =1[b=1) -~ P(/(H,s) =1[b=0))

where the probabilities are computed over the internal randomness of <, a uniform b €
{0,1} and inputs according to P, which is defined in DDP(n,q, R,T) (Problem @ We
define the DDP(n, ¢, R, T)-computational success in time T as:

SuchDP("’q’R’T)(t) 9 max (AdvDDP(""I’R’T)(,Q%)).
o | |<T

where |&/| denotes the running time of < .

Prove that when (H,s) is distributed according to @ (for a fized b € {0,1}) we have:

P(</(H,s) = b) = % + AdvPPP (7).

2. ABouT RaNpDoM CODES

Recall for this section the definition of the statistical distance, sometimes called the total variational
distance. It is a distance for probability distributions, which in the case where X and Y are two
random variables taking their values in a same finite space & is defined as

A(X,Y) d:ef%ZW(X:a)—]P’(Y:a)L
TEE
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Furthermore, .#; will denote the set of words of Hamming weight ¢ in Fy/, namely

LS’td:Cf{XEIFZ x| =t}

Exercise 10 (Important). Let us introduce the following average decoding problems

Problem 4 (Decoding Problem - DP(n,q, R, 7)). Let k o |Rn] and t o |Tn].

— Input : (H,s def xH") where H (resp. x) is uniformly distributed over ]F,(Jn_k)xn
(resp. words of Hamming weight t in Fy ).

— Output : an error e € Fy of Hamming weight t such that eH™ =s.

Problem 5. DP'(n,q, R, 7). Let k o |Rn] and t if |Tn].
— Input : (G,y “sa + e) where G,s and e are uniformly distributed over ]F’;X”, IF’;
and words of Hamming weight t in Fy.
— Output : an error € € Fy of Hamming weight t such that y — e = mG for some
m € F’;.
Show that for any algorithm <7 solving DP'(n, q, R, T) with probability ¢ and time T, there exists an

algorithm % which solves DP(n,q, R, T) in time O (n3 T) with probability > ¢ — O (q* mi“(k’”’k)),
Show that we can exchange DP’ by DP in the previous question.

Hint: the following lemma may be useful

Lemma 1. Let G € IFZX" (resp. H € anfk)xn) be a uniformly random matriz and

Gy € F’;X” (resp. H,,_j € Ff]”_k)xn) be a uniformly random matriz of rank k (resp.
n—k). We have:

A(G,Gr) =0 (g7 M) (resp. A(HH, ) =0 (7))

Exercise 11. Show that for any non-zeroy € Fy, G being distributed uniformly at random among
k
]Fq Xn ,
N 1
Pa(y € €) = o

where C* is defined as {c* eky : Ge*' = O}.

Exercise 12. Let G and H being uniformly distributed at random among IFZX” and F,Sn_k)xn.

Show that,

k_ n n _ n
EG(ﬁ{C€G3|C|:t}):q 1< )(ql)t and Eg (f{ce€C:|c| is even}):%w.

q" t qn—k

Hint: For the first part of the exercise first show that mG is uniformly distributed over Fy when
m € F\{0}.

Exercise 13. Let H € an_k)xn being uniformly distributed and s € F;‘*k, e € . being some
random variables. Show that

1
EH (A (eHT7 S)) = W Z A (eHg7 S)

H, eFSIn—k) Xmn

Exercise 14. Let us admit the following lemma (a variation of the left-over hash lemma)
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Lemma 2. Let € = (h;)ier be a finite family of applications from E in F. Let ¢ be the
“collision bias”

Phcor(he) = h(e') = (1 +2)
where h is uniformly drawn in 7, e and €' be uniformly distributed over E. Let % be the
uniform distribution over F' and 2(h) be the distribution h(e) when e is chosen uniformly
at random in E. We have,
1

En (A2 (h). %)) < 5 V=

Let e (resp. eB°") be uniformly distributed at random in the words of Hamming weight t (resp.

the eB° are independent Bernoulli random variables of parameter T = t/n) in Fy. Show that
2n—k — 1
(?)

Brr (A (P/HT 5)) < £ /25 (14 (1 20)2)"

Exr (A (eH ) < |

What can you deduce when comparing both results with e or e®°* 2 What is the “better” choice of
error x to ensure that xH" is uniformly distributed?

Exercise 15. Let C be a fized [n, k]4-code of parity-check matrizc H and y,s, e € Fy [E‘g*k X S
be uniformly distributed. Our aim in this exercise is to show that A(c+e,y) = A(eHT,s).

1. Givens € IFZ_’“, let y(s) € Fy be such that y(s)H'" =s. Show that
yEeFn seFn—F c'Ee

2. Deduce that A(c +e,y) = A(eHT,s).

1
Pec(c+e=y(s)+c)— q—n )

1
Peclc+e=y)— q—n

3. INFORMATION SET DECODING ALGORITHMS

Exercise 16. Let T € [0,1/2]. Show how from an algorithm solving DP(n,2, R, T) (Problem[]]) we
can deduce an algorithm solving DP(n,2, R, 1 — 7) in the same running-time (and reciprocally).

Let .# C [1,n] and ¢ € Fy. We will denote c» the vector whose coordinates are those of
¢ = (¢i)1<i<n which are indexed by ., i.e. ¢y = (¢;)icr. Given H € F}*" we will denote by
H ; the matrix whose columns are those of H which are indexed by .#.

Exercise 17. Let C be an [n, k]-code and & C [1,n] be of size k. Recall that % is an information
set of C if
VXEF’;: dlc € € such that ¢y = X.

Show that,
S is an information set for € <= VG generator matriz of C, G s is invertible
<= VH parity-check matriz of C, H5 is invertible

Let .7 be an information set of C. Given x € IFZ, how to compute the unique codeword c € C such
that ¢y = x? Is it easy?

Exercise 18. Recall that Prange’s algorithm works as follows

The distribution %;.
- Ift< %(n — k), 9y only outputs 0 € F¥,
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— ifte [[q%ql(nfk), k+q%1(n7k)]], Dy outputs uniform vectors of weight t — q;—l(nfk),
—ift>k+ q%l(n — k), 2y outputs uniform vectors of weight k.

The algorithm.
1. Picking the information set. Let . C [1,n] be a random set of size k. If H €

]anfk)x(nfk) is not of full-rank, pick another set 7.

2. Linear algebra. Perform a Gaussian elimination to compute a non-singular matric
S € B XK guch that SH = 1,, 4.

3. Test Step. Pick x € F’; according to the distribution Z; and let e € Fy be such that
ey:(s—xHTj)ST ; eg =X.
If le| #t go back to Step 1, otherwise it is a solution.

Describe Prange’s algorithm with the generator matriz formalism in the same fashion as above
(with also three steps and the distribution 9y).

Exercise 19. Let C be an [n,k]-code and # C [1,n] be of size k + £. Recall that # is an
augmented information set of C if it contains an information set.

Show that,
F is an augmented information set for € <= 2 4/ {C/ € ]F’;‘*‘z 1 Cc€E (3} is a code of dimension k.

Given H € Fén_k)xn be a parity-check matriz of C. Suppose that Z is an augmented information
set of C. Give a parity-check matriz of P (this code is known that punctured code of C at positions

I)-

Exercise 20. Recall that Dumer’s algorithm is as follows

The algorithm.
1. Splitting in two parts. First we randomly select a set ¥ C [1,n] of n/2 positions.
2. Building lists step. We build,

de t de t
2 el el = 5 o a {Hel T sl = L

3. Collisions step. We merge the above lists (with an efficient technique like hashing or
sorting)

L D d:ef{(el,eg)eflxo%, HyeI:—H?e;—FST}.

and output this new list. If it is empty we go back to Step 1 and pick another set of
n/2 positions.

and we have the following proposition

Proposition 1. The complezity Cpumer(n,q, R,7) of Dumer’s algorithm to solve
DP(n,q, R,T) is up to a polynomial factor (in n) given by

n g —1)
( >(q _ ]_)t + (tqn_k
Furthermore, Dumer’s algorithm finds max (1, %) solutions (up to a polynomial

. d d
factor in n) where k tef Rn and t tef ™.
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We have made the choice in the above Dumer’s algorithm to build lists of mazimum size, namely
(?//22) (q—1)"2. Let (H,s) € Fénfk)xn X IFZ}_’“ be an instance of a decoding problem that we would
like to solve at distance t. We suppose that (H,s) are uniformly distributed, in particular we do

not suppose that there is always a solution. Show that a slight variation of Dumer’s algorithm
2 2
enables to compute qf—,k solutions (there is no mazximum in this formula, why?) in time L+ qf—,k

(up to polynomial factors). Furthermore L has necessarily to verify L < (;L//ZQ)(q — 12, why?

What is the condition over t and L for this algorithm to output solutions in amortized time one?
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