POST-QUANTUM CRYPTOGRAPHY - CODES STARTING EXERCISES

1. Basic Exercises on Codes

In what follows, $|\cdot|$ will denote the Hamming weight, namely

$$
\forall \mathbf{x} \in \mathbb{F}_{q}^{k}, \quad|\mathbf{x}| \stackrel{\text { def }}{=} \sharp\left\{i \in \llbracket 1, n \rrbracket, x_{i} \neq 0\right\} .
$$

Exercise 1. Give the dimension of the following linear codes:

1. $\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right): f \in \mathbb{F}_{q}[X]\right.$ and $\left.\operatorname{deg}(f)<k\right\}$ where the x_{i} 's are distinct elements of \mathbb{F}_{q},
2. $\{(\mathbf{u}, \mathbf{u}+\mathbf{v}): \mathbf{u} \in U$ and $\mathbf{v} \in V\}$ where U (resp. V) is an $\left[n, k_{U}\right]_{q^{-}}$-code (resp. $\left[n, k_{V}\right]_{q^{-}}$ code).

Exercise 2. Let $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ be a generator matrix of some code \mathcal{C}. Let $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}$ of rank $n-k$ such that $\mathbf{G H}^{\boldsymbol{\top}}=\mathbf{0}$. Show that \mathbf{H} is a parity-check matrix of \mathfrak{C}.

Exercise 3. Give the minimum distance of the following codes:

1. $\left\{\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right): f \in \mathbb{F}_{q}[X]\right.$ and $\left.\operatorname{deg}(f)<k\right\}$ where the x_{i} 's are distinct elements of \mathbb{F}_{q}.
2. $\{(\mathbf{u}, \mathbf{u}+\mathbf{v}): \mathbf{u} \in U$ and $\mathbf{v} \in V\}$ where U (resp. V) is a code of length n over \mathbb{F}_{q} and minimum distance $d_{U}\left(\right.$ resp. $\left.d_{V}\right)$.
3. The Hamming code of length $2^{r}-1$, namely the code which admits a parity check matrix $\mathbf{H} \in \mathbb{F}_{q}^{r \times\left(2^{r}-1\right)} \stackrel{\text { def }}{=}\left(\mathbf{x}^{\boldsymbol{\top}}\right)_{\mathbf{x} \in \mathbb{F}^{r} \backslash\{\mathbf{0}\}}$.

Hint: A code has minimum distance d if and only if for some parity-check matrix \mathbf{H} every (d -1)-tuple of columns are linearly independent and there is at least one linearly linked d-tuple of columns.

Exercise 4. Let \mathbf{H} be a parity-check matrix of a code \mathfrak{C} of minimum distance d. Show that the $\mathbf{H e}^{\top}$'s are distinct when $|\mathbf{e}| \leq \frac{d-1}{2}$.

Exercise 5. Let $\mathcal{C} \subseteq \mathbb{F}_{2}^{n}$ be a code of minimum distance d and $t>n-\frac{d}{2}$. Show that there exists at most one codeword $\mathbf{c} \in \mathcal{C}$ of weight t.

Exercise 6. Let us introduce the following problems
Problem 1 (Noisy Codeword Decoding). Given $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ of rank $k, t \in \llbracket 0, n \rrbracket, \mathbf{y} \in \mathbb{F}_{q}^{n}$ where $\mathbf{y}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c}=\mathbf{m} \mathbf{G}$ for some $\mathbf{m} \in \mathbb{F}_{q}^{k}$ and $|\mathbf{e}|=t$, find \mathbf{e}.

Problem 2 (Syndrome Decoding). Given $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}$ of rank $n-k, t \in \llbracket 0, n \rrbracket, \mathbf{s} \in \mathbb{F}_{q}^{n-k}$ where $\mathbf{H e}{ }^{\boldsymbol{\top}}=\mathbf{s}^{\boldsymbol{\top}}$ with $|\mathbf{e}|=t$, find \mathbf{e}.

Show that any solver of Problem 2 (resp. 1) can be turned in polynomial time into an algorithm solving Problem 1 (resp. 2).

Exercise 7. Recall that

$$
\operatorname{GRS}_{k}(\mathbf{x}, \mathbf{z}) \stackrel{\text { def }}{=}\left\{\left(z_{1} f\left(x_{1}\right), \ldots, z_{n} f\left(x_{n}\right)\right): f \in \mathbb{F}_{q}[X] \text { and } \operatorname{deg}(f)<k\right\}
$$

where $\mathbf{z} \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$ and \mathbf{x} be an n-tuple of pairwise distinct elements of \mathbb{F}_{q} (in particular $n \leq q$) and $k \leq n$.
Show that $\operatorname{GRS}_{k}(\mathbf{x}, \mathbf{z})^{*}=\operatorname{GRS}_{n-k}\left(\mathbf{x}, \mathbf{z}^{\prime}\right)$ where $z_{i}^{\prime}=\frac{1}{z_{i} \prod_{j \neq i}\left(x_{i}-x_{j}\right)}$. Deduce that $\operatorname{GRS}_{k}(\mathbf{x}, \mathbf{z})$ has a parity-check matrix of the following form:

$$
\mathbf{H} \stackrel{\text { def }}{=}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\
\cdots & \cdots & \cdots & \cdots \\
x_{1}^{n-k-1} & x_{2}^{n-k-1} & \cdots & x_{n}^{n-k-1}
\end{array}\right)\left(\begin{array}{cccc}
z_{1}^{\prime} & & & 0 \\
& z_{2}^{\prime} & & \\
& & \ddots & \\
0 & & & z_{n}^{\prime}
\end{array}\right)
$$

Exercise 8. Describe how the public-key encryption scheme of McEliece works with generator matrices.

Exercise 9. Let us define the problem DDP as
Problem 3 (Decision Decoding Problem - DDP $(n, q, R, \tau))$. Let $k \stackrel{\text { def }}{=}\lfloor R n\rfloor$ and $t \stackrel{\text { def }}{=}\lfloor\tau n\rfloor$.

- Distributions:
* $\mathscr{D}_{0}:(\mathbf{H}, \mathbf{s})$ be uniformly distributed over $\mathbb{F}_{q}^{(n-k) \times n} \times \mathbb{F}_{q}^{n-k}$.
* $\mathscr{D}_{1}:\left(\mathbf{H}, \mathbf{x H}^{\boldsymbol{\top}}\right)$ where \mathbf{H} (resp. \mathbf{x}) being uniformly distributed over $\mathbb{F}_{q}^{(n-k) \times n}$ (resp. words of Hamming weight t).
- Input: (\mathbf{H}, \mathbf{s}) distributed according to \mathscr{D}_{b} where $b \in\{0,1\}$ is uniform,
- Decision: $b^{\prime} \in\{0,1\}$.

Let us introduce the following definitions,
Definition 1. The $\operatorname{DDP}(n, q, R, \tau)$-advantage of an algorithm \mathscr{A} is defined as:

$$
A d v^{\operatorname{DDP}(n, q, R, \tau)}(\mathscr{A}) \stackrel{\text { def }}{=} \frac{1}{2}(\mathbb{P}(\mathscr{A}(\mathbf{H}, \mathbf{s})=1 \mid b=1)-\mathbb{P}(\mathscr{A}(\mathbf{H}, \mathbf{s})=1 \mid b=0))
$$

where the probabilities are computed over the internal randomness of \mathscr{A}, a uniform $b \in$ $\{0,1\}$ and inputs according to \mathscr{D}_{b} which is defined in $\operatorname{DDP}(n, q, R, \tau)$ (Problem 3). We define the $\operatorname{DDP}(n, q, R, \tau)$-computational success in time T as:

$$
S u c c^{\operatorname{DDP}(n, q, R, \tau)}(t) \stackrel{\text { def }}{=} \max _{\mathscr{A}:|\mathscr{A}| \leq T}\left(A d v^{\mathrm{DDP}(n, q, R, \tau)}(\mathscr{A})\right)
$$

where $|\mathscr{A}|$ denotes the running time of \mathscr{A}.
Prove that when (\mathbf{H}, \mathbf{s}) is distributed according to \mathscr{D}_{b} (for a fixed $b \in\{0,1\}$) we have:

$$
\mathbb{P}(\mathscr{A}(\mathbf{H}, \mathbf{s})=b)=\frac{1}{2}+A d v^{\mathrm{DDP}}(\mathscr{A})
$$

2. About Random Codes

Recall for this section the definition of the statistical distance, sometimes called the total variational distance. It is a distance for probability distributions, which in the case where X and Y are two random variables taking their values in a same finite space \mathscr{E} is defined as

$$
\Delta(X, Y) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{x \in \mathscr{E}}|\mathbb{P}(X=a)-\mathbb{P}(Y=a)|
$$

Furthermore, \mathscr{S}_{t} will denote the set of words of Hamming weight t in \mathbb{F}_{q}^{n}, namely

$$
\mathscr{S}_{t} \stackrel{\text { def }}{=}\left\{\mathbf{x} \in \mathbb{F}_{q}^{n}:|\mathbf{x}|=t\right\}
$$

Exercise 10 (Important). Let us introduce the following average decoding problems
Problem 4 (Decoding Problem $-\operatorname{DP}(n, q, R, \tau)$). Let $k \stackrel{\text { def }}{=}\lfloor R n\rfloor$ and $t \stackrel{\text { def }}{=}\lfloor\tau n\rfloor$.

- Input: $\left(\mathbf{H}, \mathbf{s} \stackrel{\text { def }}{=} \mathbf{x} \mathbf{H}^{\boldsymbol{\top}}\right)$ where \mathbf{H} (resp. \mathbf{x}) is uniformly distributed over $\mathbb{F}_{q}^{(n-k) \times n}$ (resp. words of Hamming weight t in \mathbb{F}_{q}^{n}).
- Output : an error $\mathbf{e} \in \mathbb{F}_{q}^{n}$ of Hamming weight t such that $\mathbf{e H}^{\top}=\mathbf{s}$.

Problem 5. $\mathrm{DP}^{\prime}(n, q, R, \tau)$. Let $k \stackrel{\text { def }}{=}\lfloor R n\rfloor$ and $t \stackrel{\text { def }}{=}\lfloor\tau n\rfloor$.

- Input: $(\mathbf{G}, \mathbf{y} \stackrel{\text { def }}{=} \mathbf{s G}+\mathbf{e})$ where \mathbf{G}, \mathbf{s} and \mathbf{e} are uniformly distributed over $\mathbb{F}_{q}^{k \times n}, \mathbb{F}_{q}^{k}$ and words of Hamming weight t in \mathbb{F}_{q}^{n}.
- Output : an error $\mathbf{e}^{\prime} \in \mathbb{F}_{q}^{n}$ of Hamming weight t such that $\mathbf{y}-\mathbf{e}^{\prime}=\mathbf{m G}$ for some $\mathbf{m} \in \mathbb{F}_{q}^{k}$.

Show that for any algorithm \mathscr{A} solving $\mathrm{DP}^{\prime}(n, q, R, \tau)$ with probability ε and time T, there exists an algorithm \mathscr{B} which solves $\operatorname{DP}(n, q, R, \tau)$ in time $O\left(n^{3} T\right)$ with probability $\geq \varepsilon-O\left(q^{-\min (k, n-k)}\right)$. Show that we can exchange DP^{\prime} by DP in the previous question.

Hint: the following lemma may be useful
Lemma 1. Let $\mathbf{G} \in \mathbb{F}_{q}^{k \times n}$ (resp. $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}$) be a uniformly random matrix and $\mathbf{G}_{k} \in \mathbb{F}_{q}^{k \times n}$ (resp. $\mathbf{H}_{n-k} \in \mathbb{F}_{q}^{(n-k) \times n}$) be a uniformly random matrix of rank k (resp. $n-k$). We have:

$$
\Delta\left(\mathbf{G}, \mathbf{G}_{k}\right)=O\left(q^{-(n-k)}\right) \quad\left(\text { resp. } \Delta\left(\mathbf{H}, \mathbf{H}_{n-k}\right)=O\left(q^{-k}\right)\right)
$$

Exercise 11. Show that for any non-zero $\mathbf{y} \in \mathbb{F}_{q}^{n}$, \mathbf{G} being distributed uniformly at random among $\mathbb{F}_{q}^{k \times n}$,

$$
\mathbb{P}_{\mathbf{G}}\left(\mathbf{y} \in \mathcal{C}^{*}\right)=\frac{1}{q^{k}}
$$

where \mathcal{C}^{*} is defined as $\left\{\mathbf{c}^{*} \in \mathbb{F}_{q}^{n}: \mathbf{G c}^{* \top}=\mathbf{0}\right\}$.

Exercise 12. Let \mathbf{G} and \mathbf{H} being uniformly distributed at random among $\mathbb{F}_{q}^{k \times n}$ and $\mathbb{F}_{q}^{(n-k) \times n}$. Show that,
$\mathbb{E}_{\mathbf{G}}(\sharp\{\mathbf{c} \in \mathcal{C}:|\mathbf{c}|=t\})=\frac{q^{k}-1}{q^{n}}\binom{n}{t}(q-1)^{t} \quad$ and $\quad \mathbb{E}_{\mathbf{H}}(\sharp\{\mathbf{c} \in \mathcal{C}:|\mathbf{c}|$ is even $\})=\frac{1}{2} \frac{q^{n}+(2-q)^{n}}{q^{n-k}}$.
Hint: For the first part of the exercise first show that mG is uniformly distributed over \mathbb{F}_{q}^{n} when $\mathbf{m} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}$.

Exercise 13. Let $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}$ being uniformly distributed and $\mathbf{s} \in \mathbb{F}_{q}^{n-k}$, e $\in \mathscr{S}_{t}$ being some random variables. Show that

$$
\mathbb{E}_{\mathbf{H}}\left(\Delta\left(\mathbf{e H}^{\top}, \mathbf{s}\right)\right)=\frac{1}{q^{(n-k) \times n}} \sum_{\mathbf{H}_{0} \in \mathbb{F}_{q}^{(n-k) \times n}} \Delta\left(\mathbf{e H}_{0}^{\top}, \mathbf{s}\right)
$$

Exercise 14. Let us admit the following lemma (a variation of the left-over hash lemma)

Lemma 2. Let $\mathscr{H}=\left(h_{i}\right)_{i \in I}$ be a finite family of applications from E in F. Let ε be the "collision bias"

$$
\mathbb{P}_{h, e, e^{\prime}}\left(h(e)=h\left(e^{\prime}\right)\right)=\frac{1}{\sharp F}(1+\varepsilon)
$$

where h is uniformly drawn in \mathscr{H}, e and e^{\prime} be uniformly distributed over E. Let \mathscr{U} be the uniform distribution over F and $\mathscr{D}(h)$ be the distribution $h(e)$ when e is chosen uniformly at random in E. We have,

$$
\mathbb{E}_{h}(\Delta(\mathscr{D}(h), \mathscr{U})) \leq \frac{1}{2} \sqrt{\varepsilon}
$$

Let \mathbf{e} (resp. $\mathbf{e}^{\mathrm{Ber}}$) be uniformly distributed at random in the words of Hamming weight t (resp. the $e_{i}^{\text {Ber }}$ are independent Bernoulli random variables of parameter $\tau \stackrel{\text { def }}{=} t / n$) in \mathbb{F}_{2}^{n}. Show that

$$
\begin{gathered}
\mathbb{E}_{\mathbf{H}}\left(\Delta\left(\mathbf{e} \mathbf{H}^{\top}, \mathbf{s}\right)\right) \leq \frac{1}{2} \sqrt{\frac{2^{n-k}-1}{\binom{n}{t}}} \\
\mathbb{E}_{\mathbf{H}}\left(\Delta\left(\mathbf{e}^{\mathrm{Ber}} \mathbf{H}^{\top}, \mathbf{s}\right)\right) \leq \frac{1}{2} \sqrt{2^{k}\left(1+(1-2 \tau)^{2}\right)^{n}}
\end{gathered}
$$

What can you deduce when comparing both results with e or $\mathbf{e}^{\text {Ber }}$? What is the "better" choice of error \mathbf{x} to ensure that $\mathbf{x} \mathbf{H}^{\top}$ is uniformly distributed?

Exercise 15. Let \mathcal{C} be a fixed $[n, k]_{q}$-code of parity-check matrix \mathbf{H} and $\mathbf{y}, \mathbf{s}, \mathbf{e} \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n-k} \times \mathscr{S}_{t}$ be uniformly distributed. Our aim in this exercise is to show that $\Delta(\mathbf{c}+\mathbf{e}, \mathbf{y})=\Delta\left(\mathbf{e H}^{\top}, \mathbf{s}\right)$.

1. Given $\mathbf{s} \in \mathbb{F}_{q}^{n-k}$, let $\mathbf{y}(\mathbf{s}) \in \mathbb{F}_{q}^{n}$ be such that $\mathbf{y}(\mathbf{s}) \mathbf{H}^{\top}=\mathbf{s}$. Show that

$$
\sum_{\mathbf{y} \in \mathbb{F}_{q}^{n}}\left|\mathbb{P}_{\mathbf{e}, \mathbf{c}}(\mathbf{c}+\mathbf{e}=\mathbf{y})-\frac{1}{q^{n}}\right|=\sum_{\mathbf{s} \in \mathbb{F}_{q}^{n-k}} \sum_{\mathbf{c}^{\prime} \in \mathcal{C}}\left|\mathbb{P}_{\mathbf{e}, \mathbf{c}}\left(\mathbf{c}+\mathbf{e}=\mathbf{y}(\mathbf{s})+\mathbf{c}^{\prime}\right)-\frac{1}{q^{n}}\right|
$$

2. Deduce that $\Delta(\mathbf{c}+\mathbf{e}, \mathbf{y})=\Delta\left(\mathbf{e H}^{\top}, \mathbf{s}\right)$.

3. Information Set Decoding Algorithms

Exercise 16. Let $\tau \in[0,1 / 2]$. Show how from an algorithm solving $\operatorname{DP}(n, 2, R, \tau)$ (Problem 4) we can deduce an algorithm solving $\operatorname{DP}(n, 2, R, 1-\tau)$ in the same running-time (and reciprocally).

Let $\mathscr{I} \subseteq \llbracket 1, n \rrbracket$ and $\mathbf{c} \in \mathbb{F}_{q}^{n}$. We will denote $\mathbf{c}_{\mathscr{I}}$ the vector whose coordinates are those of $\mathbf{c}=\left(c_{i}\right)_{1 \leq i \leq n}$ which are indexed by \mathscr{I}, i.e. $\mathbf{c}_{\mathscr{I}}=\left(c_{i}\right)_{i \in \mathscr{I}}$. Given $\mathbf{H} \in \mathbb{F}_{q}^{r \times n}$ we will denote by $\mathbf{H}_{\mathscr{I}}$ the matrix whose columns are those of \mathbf{H} which are indexed by \mathscr{I}.

Exercise 17. Let \mathcal{C} be an $[n, k]$-code and $\mathscr{I} \subseteq \llbracket 1, n \rrbracket$ be of size k. Recall that \mathscr{I} is an information set of \mathcal{C} if

$$
\forall \mathbf{x} \in \mathbb{F}_{q}^{k}: \quad \exists!\mathbf{c} \in \mathcal{C} \text { such that } \mathbf{c}_{\mathscr{I}}=\mathbf{x}
$$

Show that,

$$
\begin{aligned}
\mathscr{I} \text { is an information set for } \mathcal{C} & \Longleftrightarrow \forall \mathbf{G} \text { generator matrix of } \mathcal{C}, \mathbf{G}_{\mathscr{I}} \text { is invertible } \\
& \Longleftrightarrow \forall \mathbf{H} \text { parity-check matrix of } \mathcal{C}, \mathbf{H}_{\mathscr{I}} \text { is invertible }
\end{aligned}
$$

Let \mathscr{I} be an information set of \mathcal{C}. Given $\mathbf{x} \in \mathbb{F}_{q}^{k}$, how to compute the unique codeword $\mathbf{c} \in \mathcal{C}$ such that $\mathbf{c}_{\mathscr{I}}=\mathbf{x}$? Is it easy?

Exercise 18. Recall that Prange's algorithm works as follows

The distribution \mathscr{D}_{t}.

- If $t<\frac{q-1}{q}(n-k), \mathscr{D}_{t}$ only outputs $\mathbf{0} \in \mathbb{F}_{q}^{k}$,
- if $t \in \llbracket \frac{q-1}{q}(n-k), k+\frac{q-1}{q}(n-k) \rrbracket, \mathscr{D}_{t}$ outputs uniform vectors of weight $t-\frac{q-1}{q}(n-k)$,
- if $t>k+\frac{q-1}{q}(n-k), \mathscr{D}_{t}$ outputs uniform vectors of weight k.

The algorithm.

1. Picking the information set. Let $\mathscr{I} \subseteq \llbracket 1, n \rrbracket$ be a random set of size k. If $\mathbf{H}_{\overline{\mathscr{J}}} \in$ $\mathbb{F}_{q}^{(n-k) \times(n-k)}$ is not of full-rank, pick another set \mathscr{I}.
2. Linear algebra. Perform a Gaussian elimination to compute a non-singular matrix $\mathbf{S} \in \mathbb{F}_{q}^{(n-k) \times(n-k)}$ such that $\mathbf{S H}_{\overline{\mathscr{I}}}=\mathbf{1}_{n-k}$.
3. Test Step. Pick $\mathbf{x} \in \mathbb{F}_{q}^{k}$ according to the distribution \mathscr{D}_{t} and let $\mathbf{e} \in \mathbb{F}_{q}^{n}$ be such that

$$
\mathbf{e}_{\overline{\mathscr{I}}}=\left(\mathbf{s}-\mathbf{x} \mathbf{H}_{\mathscr{I}}^{\top}\right) \mathbf{S}^{\top} \quad ; \quad \mathbf{e}_{\mathscr{I}}=\mathbf{x} .
$$

If $|\mathbf{e}| \neq t$ go back to Step 1, otherwise it is a solution.
Describe Prange's algorithm with the generator matrix formalism in the same fashion as above (with also three steps and the distribution \mathscr{D}_{t}).

Exercise 19. Let \mathcal{C} be an $[n, k]$-code and $\mathscr{J} \subseteq \llbracket 1, n \rrbracket$ be of size $k+\ell$. Recall that \mathscr{J} is an augmented information set of \mathcal{C} if it contains an information set.
Show that,
\mathscr{J} is an augmented information set for $\mathcal{C} \Longleftrightarrow \mathscr{D} \stackrel{\text { def }}{=}\left\{\mathbf{c}_{\mathscr{J}} \in \mathbb{F}_{q}^{k+\ell}: \mathbf{c} \in \mathcal{C}\right\}$ is a code of dimension k.
Given $\mathbf{H} \in \mathbb{F}_{q}^{(n-k) \times n}$ be a parity-check matrix of \mathcal{C}. Suppose that \mathscr{J} is an augmented information set of \mathcal{C}. Give a parity-check matrix of \mathscr{D} (this code is known that punctured code of \mathcal{C} at positions $\overline{\mathscr{J}})$.

Exercise 20. Recall that Dumer's algorithm is as follows

The algorithm.

1. Splitting in two parts. First we randomly select a set $\mathscr{S} \subseteq \llbracket 1, n \rrbracket$ of $n / 2$ positions.
2. Building lists step. We build,

$$
\mathscr{L}_{1} \stackrel{\text { def }}{=}\left\{\mathbf{H}_{\mathscr{S}} \mathbf{e}_{1}^{\top}:\left|\mathbf{e}_{1}\right|=\frac{t}{2}\right\} \quad ; \quad \mathscr{L}_{2} \stackrel{\text { def }}{=}\left\{-\mathbf{H}_{\bar{S}} \mathbf{e}_{2}^{\top}+\mathbf{s}^{\top}:\left|\mathbf{e}_{2}\right|=\frac{t}{2}\right\} .
$$

3. Collisions step. We merge the above lists (with an efficient technique like hashing or sorting)

$$
\mathscr{L}_{1} \bowtie \mathscr{L}_{2} \stackrel{\text { def }}{=}\left\{\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \in \mathscr{L}_{1} \times \mathscr{L}_{2}, \quad \mathbf{H}_{\mathscr{S}} \mathbf{e}_{1}^{\top}=-\mathbf{H}_{\mathscr{S}} \mathbf{e}_{2}^{\top}+\mathbf{s}^{\top}\right\}
$$

and output this new list. If it is empty we go back to Step 1 and pick another set of $n / 2$ positions.
and we have the following proposition

Proposition 1. The complexity $C_{\text {Dumer }}(n, q, R, \tau)$ of Dumer's algorithm to solve $\mathrm{DP}(n, q, R, \tau)$ is up to a polynomial factor (in n) given by

$$
\sqrt{\binom{n}{t}(q-1)^{t}}+\frac{\binom{n}{t}(q-1)^{t}}{q^{n-k}}
$$

Furthermore, Dumer's algorithm finds $\max \left(1, \frac{\binom{n}{t}(q-1)^{t}}{q^{n-k}}\right)$ solutions (up to a polynomial factor in n) where $k \stackrel{\text { def }}{=} R n$ and $t \stackrel{\text { def }}{=} \tau n$.

We have made the choice in the above Dumer's algorithm to build lists of maximum size, namely $\binom{n / 2}{t / 2}(q-1)^{t / 2}$. Let $(\mathbf{H}, \mathbf{s}) \in \mathbb{F}_{q}^{(n-k) \times n} \times \mathbb{F}_{q}^{n-k}$ be an instance of a decoding problem that we would like to solve at distance t. We suppose that (\mathbf{H}, \mathbf{s}) are uniformly distributed, in particular we do not suppose that there is always a solution. Show that a slight variation of Dumer's algorithm enables to compute $\frac{L^{2}}{q^{n-k}}$ solutions (there is no maximum in this formula, why?) in time $L+\frac{L^{2}}{q^{n-k}}$ (up to polynomial factors). Furthermore L has necessarily to verify $L \leq\binom{ n / 2}{t / 2}(q-1)^{t / 2}$, why? What is the condition over t and L for this algorithm to output solutions in amortized time one?

